Due to the severe harmful impacts of industrial dyeing wastewater on ecosystems and human health, proper treatment is crucial. Herein, the use of modified graphite as an adsorbent for dyeing wastewater treatment was investigated in this study. The graphite was oxidized and intercalated using a phosphoric acid-nitric acid-potassium permanganate system and then thermally treated at high temperatures to optimize its structure. By adjusting the thermal treatment temperature, the graphite adsorbent with varying porosity was obtained. The optimized graphite demonstrated significant improvement in adsorption performance for dyes and organic compounds, achieving a removal rate of over 85% for methylene blue (MB) dye. The optimal adsorption performance is achieved with a 1.6 mg modified graphite adsorbent at 60 °C under alkaline conditions for adsorbing 10 ppm MB. Adsorption kinetics and isotherm models were applied to elucidate the adsorption mechanisms. The results fit the Langmuir model, suggesting that monolayer homogeneous adsorption is favorable. Importantly, the results demonstrate that high-temperature treatment can significantly enhance the adsorption properties of coal-based graphite, supporting its application in dyeing wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395901 | PMC |
http://dx.doi.org/10.3390/ma17174349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!