Organic phase change material is an ideal solution to solve the heat dissipation problem of electronic devices. However, its low thermal conductivity limits its application. To solve this problem, a new porous aluminum skeleton/paraffin composite phase change material (AS-PCM) was prepared. The effects of porosity and porous aluminum skeletons on temperature control performance were explored. The experimental results show that the addition of AS significantly improves the thermal conductivity of organic PCM, and the thermal conductivity of AS-PCM is 32.3-59.6 times higher than that of pure paraffin. In addition, the temperature difference in AS-PCM with 75% porosity is 1-2 °C lower than that of AS-PCM with 85%, and 5-8 °C lower than that of AS-PCM with 95% porosity. The skeleton structure has an impact on the temperature control performance. The Mcc porous aluminum skeleton/paraffin composite phase change material (MAS-PCM) yields the best thermal performance compared with the Fcc porous aluminum skeleton/paraffin composite phase change material (FAS-PCM). The temperature control time of the MAS-PCM heat sink is increased by 5.3-50.8% relative to the FAS-PCM heat sink. The research results provide a novel approach for improving the thermal conductivity of PCMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396580PMC
http://dx.doi.org/10.3390/ma17174332DOI Listing

Publication Analysis

Top Keywords

porous aluminum
20
phase change
20
change material
20
aluminum skeleton/paraffin
16
skeleton/paraffin composite
16
composite phase
16
thermal conductivity
16
heat sink
12
temperature control
12
thermal performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!