Modelling and Characterisation of Orthotropic Damage in Aluminium Alloy 2024.

Materials (Basel)

Centre for Assessment of Structures and Materials under Extreme Conditions (CASMEC), Department of Mechanical and Aerospace Engineering, Brunel University London, London UB8 3PH, UK.

Published: August 2024

The aim of the work presented in this paper was development of a thermodynamically consistent constitutive model for orthotopic metals and determination of its parameters based on standard characterisation methods used in the aerospace industry. The model was derived with additive decomposition of the strain tensor and consisted of an elastic part, derived from Helmholtz free energy, Hill's thermodynamic potential, which controls evolution of plastic deformation, and damage orthotopic potential, which controls evolution of damage in material. Damage effects were incorporated using the continuum damage mechanics approach, with the effective stress and energy equivalence principle. Material characterisation and derivation of model parameters was conducted with standard specimens with a uniform cross-section, although a number of tests with non-uniform cross-sections were also conducted here. The tests were designed to assess the extent of damage in material over a range of plastic deformation values, where displacement was measured locally using digital image correlation. The new model was implemented as a user material subroutine in Abaqus and verified and validated against the experimental results for aerospace-grade aluminium alloy 2024-T3. Verification was conducted in a series of single element tests, designed to separately validate elasticity, plasticity and damage-related parts of the model. Validation at this stage of the development was based on comparison of the numerical results with experimental data obtained in the quasistatic characterisation tests, which illustrated the ability of the modelling approach to predict experimentally observed behaviour. A validated user material subroutine allows for efficient simulation-led design improvements of aluminium components, such as stiffened panels and the other thin-wall structures used in the aerospace industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395952PMC
http://dx.doi.org/10.3390/ma17174281DOI Listing

Publication Analysis

Top Keywords

aluminium alloy
8
aerospace industry
8
potential controls
8
controls evolution
8
plastic deformation
8
damage material
8
tests designed
8
user material
8
material subroutine
8
damage
6

Similar Publications

The complementary properties of corrosion resistance and ballistic resistance of AA5083 and AA7075, respectively, explain the significance of welding these two alloys in the marine armor industry. This study investigates a novel Al-SiC matrix reinforcement with a different SiC weight ratio in dissimilar friction stir welding of the AA5083/AA7075 joint at different transverse and rotational speeds. The study deduced that the novel matrix can play an important role in improving strength and ductility simultaneously.

View Article and Find Full Text PDF

Enhancing Ω Phase Thermal Stability in Al Alloys through Interstitial Ordering.

J Phys Condens Matter

January 2025

Department of Physics, Hunan Normal University, Building of quantum, Hunan normal university, Changsha, Hunan, 410081, CHINA.

Scandium (Sc) can orderly occupy interstitial sites within the Ω phase of aluminum alloys, forming a new phase that significantly enhances the thermal stability of the alloy. However, Sc is relatively expensive and rare. In this work, we employ first-principles calculations to delve into the physical essence interstitial ordering of Sc in enhancing thermal stability at the electronic level, thereby revealing the crucial factors responsible for this improvement.

View Article and Find Full Text PDF

A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research.

View Article and Find Full Text PDF

Effect of Stress Aging on Strength, Toughness and Corrosion Resistance of Al-10Zn-3Mg-3Cu Alloy.

Materials (Basel)

January 2025

Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.

The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!