Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Beta-phase gallium oxide (β-GaO) is a cutting-edge ultrawide bandgap (UWBG) semiconductor, featuring a bandgap energy of around 4.8 eV and a highly critical electric field strength of about 8 MV/cm. These properties make it highly suitable for next-generation power electronics and deep ultraviolet optoelectronics. Key advantages of β-GaO include the availability of large-size single-crystal bulk native substrates produced from melt and the precise control of n-type doping during both bulk growth and thin-film epitaxy. A comprehensive understanding of the fundamental growth processes, control parameters, and underlying mechanisms is essential to enable scalable manufacturing of high-performance epitaxial structures. This review highlights recent advancements in the epitaxial growth of β-GaO through various techniques, including Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD), Hydride Vapor Phase Epitaxy (HVPE), Mist Chemical Vapor Deposition (Mist CVD), Pulsed Laser Deposition (PLD), and Low-Pressure Chemical Vapor Deposition (LPCVD). This review concentrates on the progress of GaO growth in achieving high growth rates, low defect densities, excellent crystalline quality, and high carrier mobilities through different approaches. It aims to advance the development of device-grade epitaxial GaO thin films and serves as a crucial resource for researchers and engineers focused on UWBG semiconductors and the future of power electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396281 | PMC |
http://dx.doi.org/10.3390/ma17174261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!