The regeneration performance of an aged styrene-butadiene-styrene block copolymer (SBS) will be significantly influenced by different rejuvenators. The objective of this study was to comparatively investigate the regeneration effect of different SBS-modified asphalt regenerators on aged SBS-modified asphalt. Four types of different regenerant formulations were selected. The optimal rejuvenator content was determined firstly using conventional performance tests. The rheological properties of the aged SBS-modified asphalt binder were evaluated by multiple stress creep recovery (MSCR) experiments. Subsequently, the regeneration mechanism of the SBS-modified asphalt binder was investigated using thin-layer chromatography-flame ionization detection (TLC-FID) and Fourier transform infrared spectroscopy (FTIR). The results showed that the rejuvenator had a certain recovery effect on the penetration, softening point, and ductility of the SBS-modified asphalt binder after aging. The SBS-modified rejuvenating agent was the most favorable among the four types of rejuvenators, where a rejuvenator dosage of 12% showed the optimal rejuvenation effect. The addition of regenerators could appropriately improve the elastic deformation capacity of the aged asphalt binder. The epoxy soybean oil in the regenerant reacted with the aging SBS-modified asphalt binder, supplementing the lost oil in the aged SBS-modified asphalt binder, dispersing the excessive accumulation of asphaltene, and making the residual SBS swell again. The viscoelastic properties of the aging asphalt binder were improved by adjusting the content of components and functional groups to achieve the purpose of regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396109PMC
http://dx.doi.org/10.3390/ma17174258DOI Listing

Publication Analysis

Top Keywords

asphalt binder
32
sbs-modified asphalt
28
aged sbs-modified
12
asphalt
10
rheological properties
8
regeneration mechanism
8
styrene-butadiene-styrene block
8
block copolymer
8
copolymer sbs
8
binder
8

Similar Publications

Asphalt pavement, widely utilized in transportation infrastructure due to its favourable properties, faces significant degradation from chloride salt erosion in coastal areas and winter deicing regions. In this study, two commonly used asphalt binders, 70# base asphalt and SBS (Styrene-Butadiene-Styrene)-modified asphalt, were utilized to study the chloride salt erosion effect on asphalt pavement by immersing materials in laboratory-prepared chloride salt solutions. The conventional properties and adhesion of asphalt were assessed using penetration, softening point, ductility, and pull-off tests, while Fourier transform infrared spectroscopy (FTIR) elucidated the erosion mechanism.

View Article and Find Full Text PDF

Utilizing Crushed Recycled Marble Stone Powder as a Sustainable Filler in SBS-Modified Asphalt Containing Recycled Tire Rubber.

Polymers (Basel)

December 2024

Faculty of Civil Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam.

The increasing demand for sustainable construction materials has driven the exploration of alternative fillers in asphalt production. Traditional asphalt mixtures rely heavily on natural aggregates and petroleum-based binders, contributing to environmental degradation. This study proposes an innovative solution by utilizing Crushed Recycled Marble Stone Powder (CRMSP) as a sustainable filler in SBS polymer-modified asphalt containing high volumes of recycled tire rubber, addressing both resource depletion and waste management concerns.

View Article and Find Full Text PDF

The paper deals with an analysis of the amount of 16 polycyclic aromatic hydrocarbons (PAHs (Polycyclic aromatic hydrocarbons-16 defined by US EPA.)) released from reclaimed asphalt mixtures used in base layers of road surfaces and in binder layers in road construction using cold in-place recycling. For the ten samples tested, the sum of 16 PAHs was determined directly for the crushed asphalt mixture and for its 24-h leachate.

View Article and Find Full Text PDF

Indoor humidity can significantly impact our comfort and well-being, often leading to the use of mechanical systems for its management. However, these systems can result in substantial carbon emissions and energy precarity. This study offers an alternative: using low-carbon materials that naturally buffer moisture to passively regulate the indoor humidity.

View Article and Find Full Text PDF

Evaluation of fatigue performance of asphalt materials based on their relaxation behavior.

Sci Rep

January 2025

Shanxi Province Land Engineering Construction Group Co., Ltd, Xian, 710075, China.

Although the fatigue properties of asphalt materials have been extensively studied, the relationship between the rheological properties and road performance of asphalt mixtures remains underexplored. In this study, we have examined the relaxation properties of asphalt binders through relaxation tests conducted on asphalt and its mastic under different conditions. A repeated stress relaxation-recovery test is designed for assessing both the relaxation and elastic properties, and a set of reasonable test parameters is recommended, thereby establishing a novel test method for measuring the relaxation and elastic behaviors of asphalt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!