Additive manufacturing (AM) allows the creation of customized designs for various medical devices, such as implants, casts, and splints. Amongst other AM technologies, fused filament fabrication (FFF) facilitates the production of intricate geometries that are often unattainable through conventional methods like subtractive manufacturing. This study aimed to develop a methodology for substituting a pathological talus bone with a personalized one created using additive manufacturing. The process involved generating a numerical parametric solid model of the specific anatomical region using computed tomography (CT) scans of the corresponding healthy organ from the patient. The healthy talus served as a mirrored template to replace the defective one. Structural simulation of the model through finite element analysis (FEA) helped compare and select different materials to identify the most suitable one for the replacement bone. The implant was then produced using FFF technology. The developed procedure yielded commendable results. The models maintained high geometric accuracy, while significantly reducing the computational time. PEEK emerged as the optimal material for bone replacement among the considered options and several specimens of talus were successfully printed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396358 | PMC |
http://dx.doi.org/10.3390/ma17174241 | DOI Listing |
MethodsX
December 2024
Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India.
This paper provides a thorough analysis of recent advancements and emerging trends in the integration of metal additive manufacturing (AM) within orthopedic implant development. With an emphasis on the use of various metals and alloys, including titanium, cobalt-chromium, and nickel-titanium, the review looks at their characteristics and how they relate to the creation of various orthopedic implants, such as spinal implants, hip and knee replacements, and cranial-facial reconstructions. The study highlights how metal additive manufacturing (AM) can revolutionize the field by enabling customized implant designs that take patient anatomical variances into account.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFSci Rep
January 2025
Udmurt Federal Research Center of the Ural Branch of RAS, Baramzina str. 34, Izhevsk, 426067, Russia.
Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:
Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, Ohio.
Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!