In addition to zinc oxide-based cements, resin-based materials are also available for temporary cementation. The aim of this in vitro study was to determine the influence of the different material compositions on temporary bonds. In nine test series (n = 30), temporary bis-acrylate single-tooth crowns were bonded onto prefabricated titanium abutments with nine different temporary luting materials. After simulating an initial (24 h, distilled water, 37 °C), a short-term (7 days, distilled water, 37 °C) and a long-term provisional restoration period (12h, distilled water, 37 °C; thermocycling: 5000 cycles) in subgroups (n = 10), the bond strength was examined using a combined tensile-shear test. Statistical analysis was performed by univariate analysis of variance or a non-parametric Kruskal-Wallis test, followed by post hoc tests. Of the three resin-based materials, two showed significantly higher bond strength values compared to all other materials ( < 0.001), regardless of the storage procedure. The resin-based materials were followed by eugenol-free and eugenol-containing zinc oxide materials. Significant intragroup differences were observed between the composite-based materials after all storage periods. This was only observed for some of the zinc oxide-based materials. The results show that under in vitro conditions, not only the composition of the temporary luting materials but also the different storage conditions have a significant influence on temporary bonds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396488 | PMC |
http://dx.doi.org/10.3390/ma17174239 | DOI Listing |
Cureus
November 2024
Department of Endodontic and Operative Dentistry, Damascus University, Damascus, SYR.
Objectives This study aimed to compare the shear bond strength of three resin cements (light-cured resin cement, pre-heated composite resin, and dual-cured self-adhesive resin cement) when bonding to lithium disilicate discs. Materials and methods Thirty-six discs made of lithium disilicate were fabricated and etched with 9.5% (HF), and 36 human premolars were collected and immersed in the acrylic molds, then randomly divided into three equal groups (n = 12): Group 1: light-cured resin cement, Group 2: pre-heated resin composite, and Group 3: dual-cured resin cement.
View Article and Find Full Text PDFJ Stomatol Oral Maxillofac Surg
December 2024
Reader, Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.. Electronic address:
Purpose: This in-vitro study aimed to compare the shear bond strength (SBS) of cobalt-chromium (Co-Cr) crowns on Corticobasal® implant abutments, evaluating the effects of two surface treatments and two luting agents.
Materials And Methods: Thirty Co-Cr crowns were fabricated using CAD-CAM technology with a direct metal laser sintering process and divided into three groups based on surface treatment: Group I (untreated), Group II (sandblasted with 50 μm Al₂O₃), and Group III (Er: YAG laser etching). Each group was further subdivided based on luting cement: Sub group A (GC Fuji Plus) and Sub group B (Rely X U200).
Braz Dent J
December 2024
Post-Graduate Program in Oral Sciences (Prosthodontics Unit), Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
The aim of this study is to assess the presence of MDP at various stages of the bonding procedure, enhance the adhesive and mechanical behavior of cemented zirconia ceramics. Fifty ceramic slices (15 × 15 × 2 mm) and 48 discs (Ø= 10 mm, 1 mm thickness) were prepared, sintered, air-abraded with aluminum oxide, and allocated considering: 1) microshear bond strength (µSBS) between ceramic slices and luting agent cylinders (height= 1 mm, Ø= 1.2 mm); 2) fatigue behavior, ceramic discs paired and bonded onto fiber-epoxy resin discs (Ø= 10 mm, 2.
View Article and Find Full Text PDFJ Oral Sci
December 2024
Department of Prothodontics, Faculty of Dentistry, Gazi University.
Purpose: This study aims to evaluate the cytotoxicity of implant luting cements and to visualize the morphological changes in the cells.
Methods: Seven experimental groups Cem Implant Cement (CIC), EsTemp Implant Cement (EIC), Harvard Implant Cement (HIC), MIS Crown Set Implant Cement (MCIC), Oxford Cem Implant Cement (OCIC), Premier Implant Cement (PIC), and Adhesor Carbofine (ZPC) were generated including one conventional, and six implant cements (n = 9). Specimens were applied to human fibroblast cell (HGF) and mouse pre-osteoblast cell line (MC3T3-E1) cells by direct contact and extract text methods.
Materials (Basel)
November 2024
Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!