Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
So-called strength-ductility trade-off is usually an inevitable scenario in precipitation-strengthened alloys. To address this challenge, high-density coherent nanoprecipitates (CNPs) as a microstructure effectively promote ductility though multiple interactions between CNPs and dislocations (i.e., coherency, order, or Orowan mechanism). Although some strain hardening theories have been reported for individual strengthening, how to increase, artificially and quantitatively, the ductility arising from cooperative strengthening due to the multiple interactions has not been realized. Accordingly, a dislocation-based theoretical framework for strain hardening is constructed in terms of irreversible thermodynamics, where nucleation, gliding, and annihilation arising from dislocations have been integrated, so that the cooperative strengthening can be treated through thermodynamic driving force ∆G and the kinetic energy barrier. Further combined with synchrotron high-energy X-ray diffraction, the current model is verified. Following the modeling, the yield stress σy is proved to be correlated with the modified strengthening mechanism, whereas the necking strain εn is shown to depend on the evolving dislocation density and, essentially, the enhanced activation volume. A criterion of high ∆G-high generalized stability is proposed to guarantee the volume fraction of CNPs improving σy and the radius of CNPs accelerating εn. This strategy of breaking the strength-ductility trade-off phenomena by controlling the cooperative strengthening can be generalized to designing metallic structured materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395813 | PMC |
http://dx.doi.org/10.3390/ma17174197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!