The main motivation for this study was to improve implant materials. The influence of silver and gold on the structure and mechanical properties of Mg-Nd-Zr alloy was studied. In the work, quantitative and qualitative evaluation of the structural components of magnesium alloy with noble metal additives was performed. The research methods used were investigation of the mechanical properties and observation of micro- and macrostructures. The results showed that modification of magnesium alloy with Ag and Au contributes to the formation of spherical intermetallics of smaller size groups, which become additional centers of crystallization and grind the cast structure. The best composition from additional alloying with silver and gold was determined. Their positive effect on the strength and ductility properties of the metal was established. Preclinical and clinical testing was performed and the prospects for noble metal modification of bioabsorbable magnesium alloy for implant production usage were shown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396641PMC
http://dx.doi.org/10.3390/ma17174173DOI Listing

Publication Analysis

Top Keywords

magnesium alloy
16
silver gold
8
mechanical properties
8
noble metal
8
alloy
5
influence noble
4
noble metals
4
metals morphology
4
morphology topology
4
topology structural
4

Similar Publications

In this research, tartaric acid was used to enhance the hydroxyapatite coating on AZ31 Mg alloy substrate through post-treatment and direct addition methods, and the corrosion resistance and biological activity of the samples were investigated. The parameters of concentration, immersion time, and pH of the coating solution were optimized by Electrochemical Impedance Spectroscopy (EIS) and Direct Current (DC) Polarization techniques. According to EIS results in the post-treatment method, tartaric acid with a concentration of 1 g/L, pH = 9 and immersion time of 2 min, increased the corrosion resistance of hydroxyapatite coating from 3630 to about 18,763 Ω.

View Article and Find Full Text PDF

This study presents a comparative analysis of the influence of Ce-Gd and Gd-Y additions on the microstructural evolution, mechanical properties, and electrochemical behavior of extruded Mg-3Zn-Mn-Ca alloy rods. Despite the frequent incorporation of Gd, Y, and Ce as alloying elements in magnesium alloys, the systematic examination of their combined effects on Mg-Zn alloys has been limited. Our findings reveal that both Gd-Ce and Gd-Y additions significantly enhance the mechanical properties of Mg-3Zn-Mn-Ca alloy, although through differing mechanisms.

View Article and Find Full Text PDF

Damage mechanisms are a key factor in materials science and are essential for understanding and predicting the behavior of materials under complex loading conditions. In this paper, the influence of different directions, different rates and different model parameters on the mechanical behavior of AZ31 magnesium alloy during the tensile process is investigated based on the secondary development of the VUMAT user subroutine based on the GTN damage model and verified by the tensile experiments at different loading rates and in different directions. The results show that AZ31 magnesium alloy exhibits significant differences in mechanical properties in radial and axial stretching, where the yield strength is lower in the radial direction than in the axial direction, and the elongation is the opposite.

View Article and Find Full Text PDF

Crystal Plasticity Simulation of Cyclic Behaviors of AZ31B Magnesium Alloys via a Modified Dislocation-Twinning-Detwinning Model.

Materials (Basel)

December 2024

Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China.

In this study, a probabilistic model within the dislotwin constitutive framework of DAMASK (the Düsseldorf Advanced Material Simulation Kit) was established to describe the cyclic loading behaviors of AZ31B magnesium alloys. Considering the detwinning procedure within the twinned region, this newly developed dislocation-twinning-detwinning model was employed to accurately simulate stress-strain behaviors of AZ31B magnesium alloys throughout tension-compression-tension (T-C-T) cycle loading. The investigations revealed that the reduction in yield stress during the reverse loading process was attributed to the active operation of twinning and detwinning modes.

View Article and Find Full Text PDF

The need to reduce energy consumption means that it is necessary to reduce the weight of vehicles. However, a thick wall of massive elements promotes the formation of casting defects, which must be removed by either plastic processing (straightening) or welding methods (surface and internal discontinuities). Basic alloys contain Al and Zn as the main alloying elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!