: Early interventions for infants at high risk of cerebral palsy (CP) are recommended, but limited evidence exists. Our objective was, therefore, to evaluate the effects of the family-centered and interprofessional Small Step early intervention program on motor development in infants at high risk of CP (ClinicalTrials.gov: NCT03264339). : A single-subject research design was employed to investigate participant characteristics (motor dysfunction severity measured using the Hammersmith Infant Neurological Examination (HINE) and Alberta Infant Motor Scale (AIMS) at three months of corrected age (3mCA) related to intervention response. The repeated measures Peabody Developmental Motor Scales-2 fine and gross motor composite (PDMS2-FMC and -GMC) and Hand Assessment for Infants (HAI) were analyzed visually by cumulative line graphs, while the Gross Motor Function Measure-66 (GMFM-66) was plotted against reference percentiles for various Gross Motor Function Classification System (GMFCS) levels. : All infants ( = 12) received the Small Step program, and eight completed all five training steps. At two years of corrected age (2yCA), nine children were diagnosed with CP. The children with the lowest HINE < 25 and/or AIMS ≤ 6 at 3mCA ( = 4) showed minor improvements during the program and were classified at GMFCS V 2yCA. Children with HINE = 25-40 ( = 5) improved their fine motor skills during the program, and four children had larger GMFM-66 improvements than expected according to the reference curves but that did not always happen during the mobility training steps. Three children with HINE = 41-50 and AIMS > 7 showed the largest improvements and were not diagnosed with CP 2yCA. : Our results indicate that the Small Step program contributed to the children's motor development, with better results for those with an initial higher HINE (>25). The specificity of training could not be confirmed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396191PMC
http://dx.doi.org/10.3390/jcm13175287DOI Listing

Publication Analysis

Top Keywords

small step
16
infants high
12
high risk
12
gross motor
12
motor
9
step early
8
early intervention
8
intervention program
8
risk cerebral
8
cerebral palsy
8

Similar Publications

While deep learning (DL) is used in patients' outcome predictions, the insufficiency of patient samples limits the accuracy. In this study, we investigated how transfer learning (TL) alleviates the small sample size problem. A 2-step TL framework was constructed for a difficult task: predicting the response of the drug temozolomide (TMZ) in glioblastoma (GBM) cell cultures.

View Article and Find Full Text PDF

Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.

View Article and Find Full Text PDF

Polysulfide Tandem Conversion for Lithium-Sulfur Batteries.

Small

January 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

The electrocatalytic conversion of 16-electron multistep polysulfides is crucial for lithium-sulfur batteries, while it is hard to achieve compatibility between intricate sulfur reduction processes and appropriate catalysts. Herein, a tandem conversion strategy is reported to boost multi-step intermediate reactions of polysulfides transformation by designing an electrocatalyst featuring cobalt and zinc sites (Co/Zn), where the Zn serve as sites for the conversion of long-chain lithium polysulfides (LiPSs), promoting the transformation of S to LiS; the Co sites accelerate the kinetics of the subsequent reduction of LiS. This tandem catalysis method not only enhances the conversion of the initial reactants but also provides additional support for the intermediates, thereby facilitating subsequent reactions to maximize capacity.

View Article and Find Full Text PDF

Polymers for mRNA Delivery.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.

mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology.

View Article and Find Full Text PDF

Control of flow deflection angle around the corner using microjet array.

Sci Rep

January 2025

Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-Ku, Nagoya, Aichi, 468-8511, Japan.

In this study, a new technique for active control of the flow around a corner is proposed and a key parameter dominating the flow deflection angle is proposed. In the technique, a microjet array is used for controlling the deflection of the flow at 33 m/s ~ 54 m/s around the 25-degree corner with a small downstream-facing step, the surface of which is lined with the micro-orifices from which jets are injected into the flow. The flow velocities around the corner are measured using a PIV (particle image velocimetry) technique under each condition for injecting the microjets into the flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!