Metal Fused Filament Fabrication provides a simple and cost-efficient way to produce dense metal parts with a homogenous microstructure. However, current limitations include the use of hazardous and expensive organic solvents during debinding for flexible filaments the stiffness of filaments made from partly water-soluble binder systems. In this study, the influence of various additives on different partly water-soluble binder systems, with regard to the flexibility and properties of the final parts, was investigated. Furthermore, a method using dynamic mechanical analysis to quantify the flexibility of filaments was introduced and successfully applied. For the first time, it was possible to produce flexible, partly water-soluble filaments with 60 vol.% solid content, which allowed the 3D printing of complex small and large parts with a high level of detail. After sintering, density values of up to 98.9% of theoretical density were achieved, which is significantly higher than those obtained with existing binder systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397800 | PMC |
http://dx.doi.org/10.3390/polym16172548 | DOI Listing |
Biomacromolecules
January 2025
Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:
In recent years, considerable concerns have been raised regarding environmental pollution caused by water-soluble polymers (WSPs). Polyvinyl alcohol (PVA), used in the textile industry and in the manufacture of medical consumables, is one type of WSPs. After use, PVA is discharged and enters aquatic ecosystems, but most of it cannot be completely biodegraded in the environment.
View Article and Find Full Text PDFCells
November 2024
Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
The biologics derived from human amniotic membranes (AMs) demonstrate potential pain-inhibitory effects in clinical settings. However, the molecular basis underlying this therapeutic effect remains elusive. HC-HA/PTX3 is a unique water-soluble regenerative matrix that is purified from human AMs.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
Photocatalytic reduction of CO to formic acid (HCOOH) was investigated in either organic or aqueous/organic media by employing three water-soluble [RhCp*(LH)Cl] (LH = n,n'-dihydroxy-2,2'-bipyridine; = 4, 5, or 6) in the presence of [Ru(bpy)], 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[]imidazole (BIH) and triethanolamine (TEOA). Through studying the electron-donating effects of two hydroxyl groups introduced into the bipyridyl ligand, we found that the substituent positions greatly affect both the catalytic efficiency and selectivity in CO reduction. More importantly, the HCOOH selectivity shows a dramatic increase from 14 to 83% upon switching the solvent media from pure organic to an aqueous/organic mixture, where the H selectivity shows a reverse phenomenon.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan. Electronic address:
The combined application of organic material and phosphorus fertilizer is an effective method to enhance phosphorus use efficiency for plant growth. This is partly because the presence of water-soluble organic matter (WSOM) derived from different organic materials can enhance the level of available phosphorus in the soil; however, it is poorly understood how this level varies with changes in the WSOM status (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!