The exploitation of high-performance membranes selective for propylene is important for developing energy-efficient propylene/propane (CH/CH) separation technologies. Although metal-organic frameworks with a molecular sieving property have been considered promising filler materials in mixed-matrix membranes (MMMs), their use in practical applications has been challenging due to a lack of interface compatibility. Herein, we adopted a surface coordination strategy that involved rationally utilizing carboxyl-functionalized PIM-1 (cPIM) and ZIF-8 to prepare a mixed-matrix membrane for efficient propylene/propane separation. The interfacial coordination between the polymer and the MOF improves their compatibility and eliminates the need for additional modification of the MOF, thereby maximizing the inherent screening performance of the MOF filler. Additionally, the utilization of porous PIM-1 guaranteed the high permeability of the MMMs. The obtained MMMs exhibited excellent separation performance. The 30 wt% ZIF-8/cPIM-1 membrane performed the best, exhibiting a high CH permeability of 1023 Barrer with a moderate CH/CH selectivity of 13.97 under 2 bars of pressure. This work presents a method that can feasibly be used for the preparation of defect-free MOF-based MMMs for specific gas separations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398130 | PMC |
http://dx.doi.org/10.3390/polym16172545 | DOI Listing |
Small
January 2025
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).
View Article and Find Full Text PDFChemSusChem
January 2025
Leiden University: Universiteit Leiden, Leiden Institute of Chemistry, Einsteinweg 55, Room number EE4.19, 2333 CC, Leiden, NETHERLANDS, KINGDOM OF THE.
Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!