This article investigates the activation of surface groups of poly(ethylene terephthalate) (PET) fibers in woven fabric by hydrolysis and their functionalization with chitosan. Two types of hydrolysis were performed-alkaline and enzymatic. The alkaline hydrolysis was performed in a more sustainable process at reduced temperature and time (80 °C, 10 min) with the addition of the cationic surfactant hexadecyltrimethylammonium chloride as an accelerator. The enzymatic hydrolysis was performed using Amano Lipase A from (2 g/L enzyme, 60 °C, 60 min, pH 9). The surface of the PET fabric was functionalized with the homogenized gel of biopolymer chitosan using a pad-dry-cure process. The durability of functionalization was tested after the first and tenth washing cycle of a modified industrial washing process according to ISO 15797:2017, in which the temperature was lowered from 75 °C to 50 °C, and ε-(phthalimido) peroxyhexanoic acid (PAP) was used as an environmentally friendly agent for chemical bleaching and disinfection. The influence of the above treatments was analyzed by weight loss, tensile properties, horizontal wicking, the FTIR-ATR technique, zeta potential measurement and SEM micrographs. The results indicate better hydrophilicity and effectiveness of both types of hydrolysis, but enzymatic hydrolysis is more environmentally friendly and favorable. In addition, alkaline hydrolysis led to a 20% reduction in tensile properties, while the action of the enzyme resulted in a change of only 2%. The presence of chitosan on polyester fibers after repeated washing was confirmed on both fabrics by zeta potential and SEM micrographs. However, functionalization with chitosan on the enzymatically bioactivated surface showed better durability after 10 washing cycles than the alkaline-hydrolyzed one. The antibacterial activity of such a bio-innovative modified PET fabric is kept after the first and tenth washing cycles. In addition, applied processes can be easily introduced to any textile factory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398088 | PMC |
http://dx.doi.org/10.3390/polym16172532 | DOI Listing |
The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany.
Nanoplastics are suspected to pollute every environment on Earth, including very remote areas reached via atmospheric transport. We approached the challenge of measuring environmental nanoplastics by combining high-sensitivity TD-PTR-MS (thermal desorption-proton transfer reaction-mass spectrometry) with trained mountaineers sampling high-altitude glaciers ("citizen science"). Particles < 1 μm were analysed for common polymers (polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene and tire wear particles), revealing nanoplastic concentrations ranging 2-80 ng mL at five of 14 sites.
View Article and Find Full Text PDFSci Rep
January 2025
Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kg), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea.
The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!