This study proposes a new, doubly re-entrant auxetic unit-cell design that is based on the widely used auxetic honeycomb structure. Our objective was to develop a structure that preserves and enhances the advantages of the auxetic honeycomb while eliminating all negative aspects. The doubly re-entrant geometry design aims to enhance the mechanical properties, while eliminating the buckling deformation characteristic of the re-entrant deformation mechanism. The effects of the geometric modification are described and evaluated using two parameters, offset and deg. A series of experiments were conducted on a wide range of parameters based on these two parameters. Specimens were printed via the vat photopolymerization process and were subjected to a compression test. Our aim was to investigate the mechanical properties (energy absorption and compressive force) and the deformation behaviour of these specimens in relation to the relevant parameters. The novel geometry achieved the intended properties, outperforming the original auxetic honeycomb structure. Increasing the and parameters results in increasing the energy absorption capability (up to 767%) and the maximum compressive force (up to 17 times). The right parameter choice eliminates buckling and results in continuous auxetic behaviour. Finally, the parameter dependency of the deformation behaviour was predicted by analytical approximation as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398169PMC
http://dx.doi.org/10.3390/polym16172524DOI Listing

Publication Analysis

Top Keywords

auxetic honeycomb
16
mechanical properties
12
doubly re-entrant
12
parameter dependency
8
re-entrant auxetic
8
honeycomb structure
8
energy absorption
8
compressive force
8
deformation behaviour
8
auxetic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!