is a cadmium (Cd) and zinc (Zn) accumulator with potential for phytoextraction of soil contaminated with heavy metals. However, how Zn affects Cd accumulation in remains unclear. In this study, seedlings were treated with 100 μmol·L Zn (Zn100), 100 μmol·L Cd (Cd100), and the Zn and Cd combination (Zn100+Cd100) for 10 days under hydroponic culture. Compared with Cd100, the Cd content in stems, leaves, and xylem saps was 1.8, 1.6, and 1.3 times more than that in Zn100+Cd100, respectively. In addition, the production of reactive oxygen species in leaves was significantly upregulated in Cd100 compared with the control, and it was downregulated in Zn100. Comparative analyses of transcriptomes and proteomes were conducted with leaves. Differentially expressed genes (DEGs) were involved in Cd uptake, transport, and sequestration, and the upregulation of some transporter genes of Zn transporters (), a natural resistance associated macrophage protein (), a metal-nicotianamine transporter (), ATP-binding cassette transporters (), oligopeptide transporters (), and metallothionein () and glutathione S-transferase () genes was higher in Zn100+Cd100 than in Cd100. In addition, differentially expressed proteins (DEPs) involved in electron transport chain, ATP, and chlorophyll biosynthesis, such as malate dehydrogenases (MDHs), ATPases, and chlorophyll / binding proteins, were mostly upregulated in Zn100. The results indicate that Zn supplement increases Cd accumulation and tolerance in by upregulating ATP-dependent Cd transport and sequestration pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397465PMC
http://dx.doi.org/10.3390/plants13172528DOI Listing

Publication Analysis

Top Keywords

atp-dependent transport
8
100 μmol·l
8
differentially expressed
8
transport sequestration
8
zinc enhances
4
enhances cadmium
4
cadmium accumulation
4
accumulation shoots
4
shoots hyperaccumulator
4
hyperaccumulator improving
4

Similar Publications

Blood transcriptomics of preclinical Alzheimer’s Disease patients.

Alzheimers Dement

December 2024

Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil

Background: Blood transcriptomic differences have been described in patients with Alzheimer’s disease (AD). However, blood transcriptomic core molecular programs in cognitively unimpaired (CU) individuals positive to biomarkers of Amyloid and Tau pathology, defined as preclinical AD, remains to be explored. Therefore, we aimed to establish blood molecular core programs in preclinical AD.

View Article and Find Full Text PDF

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

The routing of blood flow throughout the brain vasculature is precisely controlled by mechanisms that serve to maintain a fine balance between local neuronal demands and vascular supply of nutrients. We recently identified two capillary endothelial cell (cEC)-based mechanisms that control cerebral blood flow in vivo: 1) electrical signaling, mediated by extracellular K-dependent activation of strong inward rectifying K (Kir2.1) channels, which are steeply activated by hyperpolarization and thus are capable of cell-to-cell propagation, and 2) calcium (Ca) signaling, which reflects release of Ca via the inositol 1,4,5-trisphosphate receptor (IPR)-a target of G-protein-coupled receptor signaling.

View Article and Find Full Text PDF

Cyanobacterial photosynthesis (to produce ATP and NADPH) might have played a pivotal role in the endosymbiotic evolution to chloroplast. However, rather than meeting the ATP requirements of the host cell, the modern-day land plant chloroplasts are suggested to utilize photosynthesized ATP predominantly for carbon assimilation. This is further highlighted by the fact that the plastidic ADP/ATP carrier translocases from land plants preferentially import ATP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!