AI Article Synopsis

  • Agroecological ecosystems have varying rates of carbon sequestration and emissions, making sustainable cropping practices important for offsetting greenhouse gas emissions.
  • This research examined the impact of different management practices, like tillage and alley cropping, on soil properties and carbon dynamics in a grapefruit orchard over two years.
  • Results indicated that alley cropping improved soil fertility and organic carbon levels, while the impact on carbon emissions differed among crops, with one crop showing better potential for long-term carbon sequestration than the other.

Article Abstract

Agroecological ecosystems produce significant carbon dioxide fluxes; however, the equilibrium of their carbon sequestration, as well as emission rates, faces considerable uncertainties. Therefore, sustainable cropping practices represent a unique opportunity for carbon sequestration, compensating greenhouse gas emissions. In this research, we evaluated the short-term effect of different management practices in alleys (tillage, no tillage, alley cropping with and on soil properties, carbon sequestration, and CO emissions in a grapefruit orchard under semiarid climate). For two years every four months, soil sampling campaigns were performed, soil CO emissions were measured, and rhizosphere soils were sampled at the end of the experimental period. The results show that alley cropping with and contributed to improve soil fertility, increasing soil organic carbon (SOC), total nitrogen, cation exchange capacity, and nutrients. The CO emission rates followed the soil temperature/moisture pattern. Tillage did not contribute to higher overall CO emissions, and there were no decreased SOC contents. In contrast, alley crops increased CO emission rates, especially ; however, the bigger root system and biomass of contributed to soil carbon sequestration at a greater rate than . Therefore, is positioned as a better option than to be used as an alley crop, although long-term monitoring is required to evaluate if the reported short-term benefits are maintained over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397426PMC
http://dx.doi.org/10.3390/plants13172399DOI Listing

Publication Analysis

Top Keywords

carbon sequestration
20
alley cropping
12
emission rates
12
soil
8
soil carbon
8
carbon dioxide
8
carbon
7
emissions
5
sequestration
5
alley
5

Similar Publications

Background: Subtropical forest plant diversity, characterized by a wide range of species adapted to seasonal variations, is vital for sustaining ecological balance, supporting diverse wildlife, and providing critical ecosystem services such as carbon sequestration and soil stabilization. The Changa Manga Forest, an ecologically rich area with varied vegetation, was analyzed to understand the intricate relationship between plant diversity and environmental factors. This study investigates the diversity patterns, vegetation structure, and environmental influences on forest biodiversity.

View Article and Find Full Text PDF

Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services.

Environ Sci Pollut Res Int

December 2024

Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.

Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented.

View Article and Find Full Text PDF

Recovery in soil carbon stocks but reduced carbon stabilization after near-natural restoration in degraded alpine meadows.

Sci Rep

December 2024

Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.

Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).

View Article and Find Full Text PDF

Urbanization enhances consumer protist-driven ARGs dissemination in riverine ecosystems.

Environ Int

December 2024

CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China. Electronic address:

Despite the emergence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARBs), how biological inter-trophic interactions, modulated by watershed urbanization, shape the resistome remains unexplored. We collected water samples from the highly urbanized (western: 65 % built land, sewage-affected) and lesser-urbanized (northern: 25 % built land, drinking water source) downstream tributaries of the Jiulong River in southeast China over dry and wet seasons. We utilized metagenomic and amplicon (16S and 18S rDNA) sequencing to investigate the relationships among microeukaryotic algae, consumer protists, bacterial communities, and the resistome.

View Article and Find Full Text PDF

[Effect of enhanced silicate minerals weathering on carbon sequestration by plant-soil systems in rice fields].

Ying Yong Sheng Tai Xue Bao

October 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!