Repetitive passive movement (RPM) enhances reciprocal inhibition. RPM is more effective when performed rapidly and at wide joint angles. However, patients with limited joint range of motion may not receive the most effective RPM. Therefore, having an alternative method for performing RPM in patients who cannot perform actual exercise due to limited joint motion is necessary. This study investigated the effects of RPM on spinal excitability using a visual kinesthetic illusion. Participants included 17 healthy adults (7 women). Measurements were taken before, during, and immediately after the intervention. We established two intervention conditions: the control condition, in which participants focused their attention forward, and the illusion condition, in which participants watched a video about RPM. F-waves from the tibialis anterior and soleus muscles were measured, and F-wave persistence and F/M amplitude ratios were analyzed. Under the illusion condition, compared with the preintervention condition, the F/M amplitude ratio of the tibialis anterior increased by approximately 44% during the intervention ( < 0.05), whereas the F-wave persistence of the soleus decreased by approximately 23% from the immediate start of the intervention ( < 0.05). This study suggests that a visual kinesthetic illusion can increase the spinal excitability of the tibialis anterior, whereas reciprocal inhibition can decrease the spinal excitability of the soleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394766 | PMC |
http://dx.doi.org/10.3390/healthcare12171696 | DOI Listing |
Sci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.
View Article and Find Full Text PDFJ Neurochem
January 2025
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.
View Article and Find Full Text PDFFront Rehabil Sci
December 2024
Department of Physical Therapy, University of Florida, Gainesville, FL, United States.
Stretching is a ubiquitous rehabilitation intervention for individuals with spinal cord injury (SCI), intended to reduce spasticity, maintain or improve joint range of motion, and prevent joint contractures. Although people with SCI report that stretching is their preferred approach to reduce spasticity, limited evidence supports the use of stretching for people with SCI, including short-term (< one hour) effects on spasticity. Further, the long-term effects and the effects of stretching on motor function have yet to be examined in humans with SCI.
View Article and Find Full Text PDFFront Neurosci
December 2024
Department of Psychology and Communication, University of Idaho, Moscow, ID, United States.
Muscle tone represents a foundational property of the motor system with the potential to impact musculoskeletal pain and motor performance. Muscle tone is involuntary, dynamically adaptive, interconnected across the body, sensitive to postural demands, and distinct from voluntary control. Research has historically focused on pathological tone, peripheral regulation, and contributions from passive tissues, without consideration of the neural regulation of active tone and its consequences, particularly for neurologically healthy individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!