A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond392umt9n160r03iq2vbaulea40dn16l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic Engineering of for Production of a Bioactive Metabolite of Bilirubin. | LitMetric

Metabolic Engineering of for Production of a Bioactive Metabolite of Bilirubin.

Int J Mol Sci

School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.

Published: September 2024

AI Article Synopsis

  • Bilirubin (BR) is a key component of a Chinese medicine, Calculus bovis, and has proven health benefits for conditions like cardiovascular issues, stroke, diabetes, and metabolic syndrome.
  • Recent research focused on developing a method to produce BR through metabolic engineering, rather than extracting it from pig bile, by expressing specific enzymes in a host organism.
  • The study successfully enhanced BR production by optimizing various genes and fermentation processes, resulting in a significant yield of 75.5 mg/L of BR, marking a breakthrough in its biosynthesis.

Article Abstract

Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. In this study, we assembled an efficient pathway for BR production by metabolic engineering of . First, heme oxygenase (HO1) and biliverdin reductase were co-expressed in . HPLC and LC-MS confirmed the accumulation of BR in the recombinant cells. To improve BR production, the catalytic abilities of HO1 from different species were investigated. In addition, the outermembrane-bound heme receptor (ChuA) and the enzymes involved in heme biosynthesis were overexpressed among which ChuA, 5-aminolevulinic acid dehydratase (HemB), protoporphyrin oxidase (HemG), and ferrochelatase (HemH) were found to enhance BR accumulation in . In addition, expression of ferredoxin (Fd) was shown to contribute to efficient conversion of heme to BR in . To increase supply of NADPH, isocitrate dehydrogenase (IDH), NAD kinase (nadK), NADP-specific glutamate dehydrogenase (gdhA), and glucose-6-phosphate 1-dehydrogenase (ZWF) were overexpressed and were found to enhance BR accumulation when these proteins were expressed with a low-copy plasmid pACYCduet-1. Modular optimization of the committed genes led to a titer of 17.2 mg/L in strain M1BHG. Finally, fed-batch fermentation was performed for the strains M1BHG and M1, resulting in accumulation of 75.5 mg/L and 25.8 mg/L of BR, respectively. This is the first report on biosynthesis of BR through metabolic engineering in a heterologous host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396004PMC
http://dx.doi.org/10.3390/ijms25179741DOI Listing

Publication Analysis

Top Keywords

metabolic engineering
12
enhance accumulation
8
metabolic
4
engineering production
4
production bioactive
4
bioactive metabolite
4
metabolite bilirubin
4
bilirubin bilirubin
4
bilirubin ingredient
4
ingredient valuable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!