Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acute kidney injury (AKI) is widely recognized as a precursor to the onset or rapid progression of chronic kidney disease (CKD). However, there is currently no effective treatment available for AKI, underscoring the urgent need for the development of new strategies to improve kidney function. Human placental mesenchymal stromal cells (hpMSCs) were isolated from donor placentas, cultured, and characterized with regard to yield, viability, flow cytometry, and potency. To mimic AKI and its progression to CKD in a rat model, a dedicated sensitive non-clinical bilateral kidney ischemia-reperfusion injury (IRI) model was utilized. The experimental group received 3 × 10 hpMSCs into each kidney, while the control group received IRI and saline and the untreated group received IRI only. Urine, serum, and kidney tissue samples were collected over a period of 28 days. The hpMSCs exhibited consistent yields, viability, and expression of mesenchymal lineage markers, and were also shown to suppress T cell proliferation in a dose-dependent manner. To ensure optimal donor selection, manufacturing optimization, and rigorous quality control, the rigorous Good Manufacturing Practice (GMP) conditions were utilized. The results indicated that hpMSCs increased rat survival rates and improved kidney function by decreasing serum creatinine, urea, potassium, and fractionated potassium levels. Furthermore, the study demonstrated that hpMSCs can prevent the initial stages of kidney structural fibrosis and improve kidney function in the early stages by mitigating late interstitial fibrosis and tubular atrophy. Additionally, a robust manufacturing process with consistent technical parameters was established.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394957 | PMC |
http://dx.doi.org/10.3390/ijms25179647 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!