NAC (NAM, ATAF1/2, and CUC2) transcription factors are unique and essential for plant growth and development. Although the NAC gene family has been identified in a wide variety of plants, its chromosomal location and function in are still unknown. In this study, a total of 69 putative CsNACs were obtained, and chromosomal location analysis indicated that the CsNAC genes mapped unevenly to 10 chromosomes. Phylogenetic analyses showed that the 69 CsNACs could be divided into six subfamilies. Additionally, the CsNAC genes in group IV-a are specific to and contain a relatively large number of exons. Promoter analysis revealed that most CsNAC promoters contained cis-elements related to plant hormones, the light response, and abiotic stress. Furthermore, transcriptome expression profiling revealed that 24 CsNAC genes in two cultivars (YM1 and YM7) were significantly differentially expressed under osmotic stress, and these 12 genes presented differential expression patterns across different cultivars according to quantitative real-time PCR (RT-qPCR) analysis. Among these, the genes homologous to the , , and genes have been proven to be involved in the response to abiotic stress and might be candidate genes for further exploration to determine their functions. The present study provides a comprehensive insight into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of NAC family genes under osmotic stress in and provides a basis for further functional characterization of CsNAC genes under osmotic stress to improve agricultural traits in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394811PMC
http://dx.doi.org/10.3390/ijms25179466DOI Listing

Publication Analysis

Top Keywords

osmotic stress
16
csnac genes
16
genes
10
nac family
8
family genes
8
chromosomal location
8
revealed csnac
8
response abiotic
8
abiotic stress
8
expression patterns
8

Similar Publications

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

The Gene Enhances the Cold Resistance of .

Plants (Basel)

January 2025

College of Life Sciences, Shihezi University, Shihezi 832000, China.

Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear () is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!