A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pilot Study on the Use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy for Diagnosing and Characterizing Cardiac Amyloidosis. | LitMetric

Amyloidosis diagnosis relies on Congo red staining with immunohistochemistry and immunofluorescence for subtyping but lacks sensitivity and specificity. Laser-microdissection mass spectroscopy offers better accuracy but is complex and requires extensive sample preparation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy offers a promising alternative for amyloidosis characterization. Cardiac tissue sections from nine patients with amyloidosis and 20 heart transplant recipients were analyzed using ATR-FTIR spectroscopy. Partial least squares discriminant analysis (PLS-DA), principal component analysis (PCA), and hierarchical cluster analysis (HCA) models were used to differentiate healthy post-transplant cardiac tissue from amyloidosis samples and identify amyloidosis subtypes [κ light chain ( = 1), λ light chain ( = 3), and transthyretin ( = 5)]. Leave-one-out cross-validation (LOOCV) was employed to assess the performance of the PLS-DA model. Significant spectral differences were found in the 1700-1500 cm and 1300-1200 cm regions, primarily related to proteins. The PLS-DA model explained 85.8% of the variance, showing clear clustering between groups. PCA in the 1712-1711 cm, 1666-1646 cm, and 1385-1383 cm regions also identified two clear clusters. The PCA and the HCA model in the 1646-1642 cm region distinguished κ light chain, λ light chain, and transthyretin cases. This pilot study suggests ATR-FTIR spectroscopy as a novel, non-destructive, rapid, and inexpensive tool for diagnosing and subtyping amyloidosis. This study was limited by a small dataset and variability in measurements across different instruments and laboratories. The PLS-DA model's performance may suffer from overfitting and class imbalance. Larger, more diverse datasets are needed for validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395672PMC
http://dx.doi.org/10.3390/ijms25179358DOI Listing

Publication Analysis

Top Keywords

light chain
16
atr-ftir spectroscopy
12
pilot study
8
attenuated total
8
total reflectance-fourier
8
reflectance-fourier transform
8
transform infrared
8
spectroscopy offers
8
cardiac tissue
8
chain light
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!