Starch is the main component that determines the yield and quality of Tartary buckwheat. As a quantitative trait, using quantitative trait locus (QTL) mapping to excavate genes associated with starch-related traits is crucial for understanding the genetic mechanisms involved in starch synthesis and molecular breeding of Tartary buckwheat varieties with high-quality starch. Employing a recombinant inbred line population as research material, this study used QTL mapping to investigate the amylose, amylopectin, and total starch contents across four distinct environments. The results identified a total of 20 QTLs spanning six chromosomes, which explained 4.07% to 14.41% of the phenotypic variation. One major QTL cluster containing three stable QTLs governing both amylose and amylopectin content, , was identified and located in the physical interval of 39.85-43.34 Mbp on chromosome Ft4. Within this cluster, we predicted 239 candidate genes and analyzed their SNP/InDel mutations, expression patterns, and enriched KEGG pathways. Ultimately, five key candidate genes, namely FtPinG0004897100.01, FtPinG0002636200.01, FtPinG0009329200.01, FtPinG0007371600.01, and FtPinG0005109900.01, were highlighted, which are potentially involved in starch synthesis and regulation, paving the way for further investigative studies. This study, for the first time, utilized QTL mapping to detect major QTLs controlling amylose, amylopectin, and total starch contents in Tartary buckwheat. The QTLs and candidate genes would provide valuable insights into the genetic mechanisms underlying starch synthesis and improving starch-related traits of Tartary buckwheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395678PMC
http://dx.doi.org/10.3390/ijms25179243DOI Listing

Publication Analysis

Top Keywords

tartary buckwheat
20
qtl mapping
16
starch-related traits
12
starch synthesis
12
amylose amylopectin
12
candidate genes
12
traits tartary
8
quantitative trait
8
genetic mechanisms
8
involved starch
8

Similar Publications

Systematic analysis and functional characterization of the chitinase gene family in Fagopyrum tataricum under salt stress.

BMC Plant Biol

December 2024

College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.

Background: Chitinases (CHIs) are glycosidases that degrade chitin, playing critical roles in plant responses to both abiotic and biotic stress. Despite their importance, the CHI family's systematic analysis and evolutionary pattern in F. tataricum (Tartary buckwheat) yet to be explored.

View Article and Find Full Text PDF

Background: The β-glucosidases (BGLU) of glycoside hydrolase family 1 hydrolyze the glycosidic bond to release β-D-glucose and related ligands, which are widely involved in important physiological processes in plants. Genome-wide analysis of the BGLU genes in the model crops Arabidopsis thaliana and Oryza sativa revealed that they are functionally diverse. In contrast, the BGLU gene family in Tartary buckwheat remains unclear.

View Article and Find Full Text PDF

Physiological Mechanism of EBR for Grain-Filling and Yield Formation of Tartary Buckwheat.

Plants (Basel)

November 2024

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.

Tartary buckwheat is characterized by its numerous inflorescences; however, the uneven distribution of resources can lead to an overload in certain areas, significantly limiting plant productivity. Plant growth regulators effectively modulate plant growth and development. This study investigated the effects of three concentrations of brassinosteroids (EBR) on the Tartary buckwheat cultivar with high seed-setting rates, specifically Chuanqiao No.

View Article and Find Full Text PDF

Oxidative stress, which results from an overproduction of reactive oxygen species (ROS), can cause damage that may contribute to a range of metabolic disorders. Antioxidants are considered to upregulate the activity of antioxidant enzymes, which are crucial for eliminating excess ROS and safeguarding the body against oxidative stress-induced damage. In the present study, the effect of polyphenol extracts from tartary buckwheat sprouts (TBSE) on the redox system of HepG2-cell-induced oxidative injury by hydrogen peroxide were investigated for evaluating the protective effect and mechanism of tartary buckwheat sprouts (TBS).

View Article and Find Full Text PDF

Unlabelled: Age-related alterations in immune function are believed to increase risk for a host of age-related diseases leading to premature death and disability. Programming of the immune system by diet, lifestyle, and environmental factors occurs across the lifespan and influences both makeup and function of the immune system, including immunometabolism. This programming is believed to act in large part through epigenetic modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!