Formulation and Development of Nanofiber-Based Ophthalmic Insert for the Treatment of Bacterial Conjunctivitis.

Int J Mol Sci

Center of Pharmacology and Drug Research & Development, University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary.

Published: August 2024

A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, and antimicrobial activity. Scanning electron microscopy confirmed uniform fibrous structures. Fourier Transform Infrared spectroscopy and X-ray diffraction analyses demonstrated the amorphous state of levofloxacin within the fibers. In vitro dissolution studies revealed a rapid (within 2 min) and complete drug release, with higher HP-β-CD levels slightly delaying the release. Cytotoxicity tests showed increased HP-β-CD concentrations induced irritation, that was mitigated by sodium hyaluronate. The antimicrobial efficacy of the nanofibers was comparable to conventional eye drops, with lower minimum inhibitory concentrations for most tested strains. The nanofibrous formulation prepared from a PVA-Polox-based viscous solution of the drug:CD 1:1 mol ratio, containing 0.4% (/) sodium hyaluronate) was identified as a particularly promising alternative formulation due to its rapid and complete dissolution, good biocompatibility, and effective antimicrobial properties. Its gelling properties indicate that the residence time on the eye surface can be increased, potentially reducing discomfort and enhancing therapeutic outcomes. The nanofibrous formulations enhanced antimicrobial efficacy, providing a preservative-free alternative that minimizes the potential eye irritation that might occur because of the preservative agent and reduces the administrated dose frequency by extending the drug's retention time on the eye's surface. Subsequently, it improves patients' adherence, which would reflect positively on the bioavailability. The levofloxacin-HP-β-CD nanofibers demonstrate promise as an alternative to traditional eye drops, offering advantages in solubility, stability, and patient compliance for ocular infection treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395199PMC
http://dx.doi.org/10.3390/ijms25179228DOI Listing

Publication Analysis

Top Keywords

sodium hyaluronate
8
antimicrobial efficacy
8
eye drops
8
formulation development
4
development nanofiber-based
4
nanofiber-based ophthalmic
4
ophthalmic insert
4
insert treatment
4
treatment bacterial
4
bacterial conjunctivitis
4

Similar Publications

Background: Facial contouring procedures are increasingly sought to address aesthetic concerns such as submental fat accumulation and lack of jawline definition. Cryolipolysis and hyaluronic acid (HA) injection have emerged as promising modalities for lower face contouring, targeting fat reduction and jawline enhancement, respectively.

Objective: This study aims to assess the efficacy and safety of a combined treatment approach involving cryolipolysis followed by HA injection for addressing lower face contour concerns.

View Article and Find Full Text PDF

Cryo-EM Structure of Human Hyaluronidase PH-20.

Proteins

December 2024

Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

PH-20 is a specific type of hyaluronidase that plays a critical role in the fertilization process by facilitating the initial binding of sperm to the glycoprotein layer surrounding the oocyte and subsequently breaking down hyaluronic acid polymers in the cumulus cell layer. PH-20 contains an epidermal growth factor (EGF)-like domain, which may be involved in the recognition of the glycoprotein layer in addition to the catalytic domain. Herein, we report the structure of human PH-20 determined by cryogenic electron microscopy.

View Article and Find Full Text PDF

Effect of strengthening agents on properties of dual-modified cassava starch-based degradable films.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Changchun University, Changchun 130022, China. Electronic address:

Insufficient hydrophobicity and mechanical properties pose significant challenges in the development of starch-based degradable films. This study prepared modified (crosslinked, acetylated, and crosslinked & acetylated) cassava starch films, and different concentrations of strengthening agents (polyvinyl alcohol, sodium alginate, gelatin, and hyaluronic acid) were added to produce modified starch composite films. The physical properties, structure characteristics, and degradability of these films were systematically evaluated.

View Article and Find Full Text PDF

Hyaluronic Acid-Based Self-Healing Hydrogels for Diabetic Wound Healing.

Adv Healthc Mater

December 2024

School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India.

Diabetic wounds, particularly diabetic foot ulcers (DFUs), are significant threats to human well-being due to their impaired healing from poor circulation and high blood sugar, increased risk of infection and potential for severe complications like amputation, all compounded by peripheral neuropathy and chronic inflammation. Most therapies and dressings for DFUs focus on one symptom at a time, however, multifunctional smart self-healing hydrogels can withstand multifactorial motional diabetic wounds. Motional wounds are easy-to-split wounds that experience tension, compression, and movement caused by stress now and then.

View Article and Find Full Text PDF

Monotherapy has poor accuracy and is easily restricted by tumor microenvironment (TME). Remodeling components of the TME to activate multimodal cancer therapy with high precision and efficiency is worth exploring. A multifunctional nanoreactor was fabricated by decorating chlorin e6-modified and PEGylated hyaluronic acid bearing diethylenetriamine-conjugated dihydrolipoic acid on the surface of glucose oxidase (GOx)-loaded hollow mesoporous CuS nanoparticles (labeled as GOx@HCuS@HA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!