Integrating protein quantitative trait loci (pQTL) data and summary statistics from genome-wide association studies (GWAS) of brain image-derived phenotypes (IDPs) can benefit in identifying IDP-related proteins. Here, we developed a systematic omics-integration analytic framework by sequentially using proteome-wide association study (PWAS), Mendelian randomization (MR), and colocalization (COLOC) analyses to identify the potentially causal brain and plasma proteins for IDPs, followed by pleiotropy analysis, mediation analysis, and drug exploration analysis to investigate potential mediation pathways of pleiotropic proteins to neuropsychiatric disorders (NDs) as well as candidate drug targets. A total of 201 plasma proteins and 398 brain proteins were significantly associated with IDPs from PWAS analysis. Subsequent MR and COLOC analyses further identified 313 potentially causal IDP-related proteins, which were significantly enriched in neural-related phenotypes, among which 91 were further identified as pleiotropic proteins associated with both IDPs and NDs, including , , , and . Drug prioritization analysis showed that 6.33% of unique pleiotropic proteins had drug targets or interactions with medications for NDs. Nine potential mediation pathways were identified to illustrate the mediating roles of the IDPs in the causal effect of the pleiotropic proteins on NDs, including the indirect effect of on Alzheimer's disease (AD) risk via radial diffusivity (RD) of the posterior limb of the internal capsule (PLIC), with the mediation proportion being 11.18%, and the indirect effect of on AD through RD of PLIC, RD of splenium of corpus callosum (SCC), and fractional anisotropy (FA) of SCC, with the mediation proportion being 18.99%, 22.79%, and 19.91%, respectively. These findings provide novel insights into pathogenesis, drug targets, and neuroimaging biomarkers of NDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395524 | PMC |
http://dx.doi.org/10.3390/ijms25179223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!