The Target-Based Virtual Screening approach is widely employed in drug development, with docking or molecular dynamics techniques commonly utilized for this purpose. This systematic review (SR) aimed to identify in silico therapeutic targets for treating Diabetes mellitus (DM) and answer the question: What therapeutic targets have been used in in silico analyses for the treatment of DM? The SR was developed following the guidelines of the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis, in accordance with the protocol registered in PROSPERO (CRD42022353808). Studies that met the PECo strategy (Problem, Exposure, Context) were included using the following databases: Medline (PubMed), Web of Science, Scopus, Embase, ScienceDirect, and Virtual Health Library. A total of 20 articles were included, which not only identified therapeutic targets in silico but also conducted in vivo analyses to validate the obtained results. The therapeutic targets most frequently indicated in in silico studies were GLUT4, DPP-IV, and PPARγ. In conclusion, a diversity of targets for the treatment of DM was verified through both in silico and in vivo reassessment. This contributes to the discovery of potential new allies for the treatment of DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394750 | PMC |
http://dx.doi.org/10.3390/ijms25179213 | DOI Listing |
Mol Biotechnol
December 2024
Unit of Scientific Research, Applied College, Qassim University, Buraydah, 52571, Saudi Arabia.
The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!