Synergistic Toxicity of Pollutant and Ultraviolet Exposure from a Mitochondrial Perspective.

Int J Mol Sci

Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada.

Published: August 2024

Ultraviolet (UV) exposure and atmospheric pollution are both independently implicated in skin diseases such as cancer and premature aging. UVA wavelengths, which penetrate in the deep layers of the skin dermis, exert their toxicity mainly through chromophore photosensitization reactions. Benzo[a]pyrene (BaP), the most abundant polycyclic aromatic hydrocarbon originating from the incomplete combustion of organic matter, could act as a chromophore and absorb UVA. We and other groups have previously shown that BaP and UVA synergize their toxicity in skin cells, which leads to important oxidation. Even if mitochondria alterations have been related to premature skin aging and other skin disorders, no studies have focused on the synergy between UV exposure and pollution on mitochondria. Our study aims to investigate the combined effect of UVA and BaP specifically on mitochondria in order to assess the effect on mitochondrial membranes and the consequences on mitochondrial activity. We show that BaP has a strong affinity for mitochondria and that this affinity leads to an important induction of lipid peroxidation and membrane disruption when exposed to UVA. Co-exposure to UVA and BaP synergizes their toxicity to negatively impact mitochondrial membrane potential, mitochondrial metabolism and the mitochondrial network. Altogether, our results highlight the implication of mitochondria in the synergistic toxicity of pollution and UV exposure and the potential of this toxicity on skin integrity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394743PMC
http://dx.doi.org/10.3390/ijms25179146DOI Listing

Publication Analysis

Top Keywords

synergistic toxicity
8
ultraviolet exposure
8
toxicity skin
8
uva bap
8
mitochondrial
6
skin
6
uva
6
toxicity
5
bap
5
mitochondria
5

Similar Publications

Inhibition of transcriptional regulation of detoxification genes contributes to insecticide resistance management in Spodoptera exigua.

Commun Biol

January 2025

Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Synthetic insecticides have been widely used for the prevention and control of disease vectors and agricultural pests. However, frequent uses of insecticides have resulted in the development of insecticide resistance in these insect pests. The resistance adversely affects the efficacy of insecticides, and seriously reduces the lifespan of insecticides.

View Article and Find Full Text PDF

The jute hairy caterpillar, Spilosoma obliqua (Lepidoptera: Erebidae) is considered as one of the major threats to jute cultivation. The best eco-friendly methods to combat these jute pests involve administration of nano-biopesticides, as a successful alternative to the toxic chemicals. In this study, a nano-biopesticide formulation containing green synthesized silver nanoparticles (Ag NPs) using Ocimum sanctum leaf extract has been proposed.

View Article and Find Full Text PDF

High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches.

Nat Commun

January 2025

College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.

Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.

View Article and Find Full Text PDF

Synergistic enhancement in ultra-trace thallium(I) removal using the titanium dioxide/biochar composite.

J Environ Manage

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.

View Article and Find Full Text PDF

High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!