One of the important genes for eyespot development in butterfly wings is . Its function has been evaluated via several methods, including CRISPR/Cas9 genome editing. However, functional inhibition may be performed at the right time at the right place using a different method. Here, we used a novel protein delivery method for pupal wing tissues in vivo to inactivate a target protein, Distal-less, with a polyclonal anti-Distal-less antibody using the blue pansy butterfly . We first demonstrated that various antibodies including the anti-Distal-less antibody were delivered to wing epithelial cells in vivo in this species. Treatment with the anti-Distal-less antibody reduced eyespot size, confirming the positive role of Distal-less in eyespot development. The treatment eliminated or deformed a parafocal element, suggesting a positive role of Distal-less in the development of the parafocal element. This result also suggested the integrity of an eyespot and its corresponding parafocal element as the border symmetry system. Taken together, these findings demonstrate that the antibody-mediated protein knockdown method is a useful tool for functional assays of proteins, such as Distal-less, expressed in pupal wing tissues, and that Distal-less functions for eyespots and parafocal elements in butterfly wing color pattern development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394314 | PMC |
http://dx.doi.org/10.3390/cells13171476 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!