As a protein extracted from soybeans, soy protein isolate (SPI) may undergo the Maillard reaction (MR) with co-existing saccharides during the processing of soy-containing foods, potentially altering its structural and functional properties. This work aimed to investigate the effect of mono- and polysaccharides on the structure and functional properties of SPI during MR. The study found that compared to oat β-glucan, the reaction rate between SPI and D-galactose was faster, leading to a higher degree of glycosylation in the SPI-galactose conjugate. D-galactose and oat β-glucan showed different influences on the secondary structure of SPI and the microenvironment of its hydrophobic amino acids. These structural variations subsequently impact a variety of the properties of the SPI conjugates. The SPI-galactose conjugate exhibited superior solubility, surface hydrophobicity, and viscosity. Meanwhile, the SPI-galactose conjugate possessed better emulsifying stability, capability to produce foam, and stability of foam than the SPI-β-glucan conjugate. Interestingly, the SPI-β-glucan conjugate, despite its lower viscosity, showed stronger hypoglycemic activity, potentially due to the inherent activity of oat β-glucan. The SPI-galactose conjugate exhibited superior antioxidant properties due to its higher content of hydroxyl groups on its molecules. These results showed that the type of saccharides had significant influences on the SPI during MR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394747PMC
http://dx.doi.org/10.3390/foods13172832DOI Listing

Publication Analysis

Top Keywords

spi-galactose conjugate
16
oat β-glucan
12
soy protein
8
protein isolate
8
maillard reaction
8
functional properties
8
properties spi
8
conjugate exhibited
8
exhibited superior
8
spi-β-glucan conjugate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!