This study evaluated the ability of a high-voltage electrostatic field (HVEF) treatment to extend the shelf life of tomatoes. Tomatoes were exposed to HVEF treatment for different lengths of time, and the physicochemical properties of tomatoes and bioactive compounds were monitored during 28 days of storage at 4 °C. The results indicated that the quality parameters of tomatoes were better maintained during storage by the HVEF treatment relative to the control treatment, extending their shelf life by 14-28 days. The HVEF treatment mitigated losses in firmness, weight, color changes, and bioactive substances, such as total phenolic content, total flavonoid content, ascorbic acid, and lycopene. The activity of pectin-degrading enzymes was also inhibited. The best exposure times for the HVEF treatment were 90 and 120 min. While the measured parameters decreased in both the control and HVEF treatment groups, the decrease in all of these measured parameters was significantly less ( < 0.05) in the optimum HVEF treatment groups than in the control. While the physicochemical properties may vary between different tomato varieties, the HVEF treatment of harvested tomatoes for 90 or 120 min can mitigate the degradation of quality parameters and loss of bioactive compounds incurred during the postharvest storage of tomatoes, thus maintaining their commercial value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394846PMC
http://dx.doi.org/10.3390/foods13172823DOI Listing

Publication Analysis

Top Keywords

hvef treatment
36
shelf life
12
treatment
10
hvef
9
high-voltage electrostatic
8
electrostatic field
8
field hvef
8
bioactive substances
8
life tomatoes
8
physicochemical properties
8

Similar Publications

This study evaluated the ability of a high-voltage electrostatic field (HVEF) treatment to extend the shelf life of tomatoes. Tomatoes were exposed to HVEF treatment for different lengths of time, and the physicochemical properties of tomatoes and bioactive compounds were monitored during 28 days of storage at 4 °C. The results indicated that the quality parameters of tomatoes were better maintained during storage by the HVEF treatment relative to the control treatment, extending their shelf life by 14-28 days.

View Article and Find Full Text PDF

Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables.

Plant Foods Hum Nutr

June 2024

Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex- Hacienda de San Juan Molino, Km 1.5 de la Carretera Estatal Santa Inés, Tecuexcomac- Tepetitla, Tepetitla, Tlaxcala, CP, 90700, México.

High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), β-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO and HO.

View Article and Find Full Text PDF

Enhancing Inactivation: Synergistic Mechanism of Ultraviolet Light and High-Voltage Electric Field.

Foods

April 2024

State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.

This study investigated the bactericidal effects of ultraviolet (UV) radiation, a high-voltage electric field (HVEF), and their combination on . The results indicated that UV and combined disinfection were more effective with longer exposure, leading to significant reductions in microbial activity. Specifically, the single UV disinfection alone reduced activity by 3.

View Article and Find Full Text PDF

Mitigating quality deterioration in chilled pork by combining cinnamaldehyde nanoemulsions and a high-voltage electrostatic field.

Food Chem

August 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China.

Cinnamaldehyde nanoemulsion (CNE) was obtained through ultrasonication, using Tween 80 as an emulsifier. The CNE was then applied to chilled pork in conjunction with a high-voltage electrostatic field (HVEF) to mitigate quality deterioration during refrigerated storage. The particle size of CNE ranged from 60 to 150 nm and was positively correlated with the amount of added cinnamaldehyde.

View Article and Find Full Text PDF

To ensure their quality and safety, harvested grapes should be protected from microbial contamination before reaching consumers. For the first time, this study combined high-voltage electric field cold plasma (HVEF-CP) and nano-ZnO antimicrobial film to inhibit microbial growth on grapes. Using the response surface method, the optimal processing parameters of HVEF-CP (a voltage of 78 kV, a frequency of 110 Hz, and a time of 116 s) were identified to achieve 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!