This study summarizes the most recent findings on osmotic dehydration, a crucial step in food preservation. The many benefits of osmotic dehydration are listed, including longer shelf life and preserved nutritional value. Mass transfer dynamics, which are critical to understanding osmotic dehydration, are explored alongside mathematical models essential for comprehending this process. The effect of osmotic agents and process parameters on efficacy, such as temperature, agitation and osmotic agent concentration, is closely examined. Pre-treatment techniques are emphasized in order to improve process effectiveness and product quality. The increasing demand for sustainability is a critical factor driving research into eco-friendly osmotic agents, waste valorization, and energy-efficient methods. The review also provides practical insights into process optimization and discusses the energy consumption and viability of osmotic dehydration compared to other drying methods. Future applications and improvements are highlighted, making it an invaluable tool for the food industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394940PMC
http://dx.doi.org/10.3390/foods13172783DOI Listing

Publication Analysis

Top Keywords

osmotic dehydration
20
food preservation
8
osmotic agents
8
osmotic
7
dehydration
5
exploring osmotic
4
dehydration food
4
preservation methods
4
methods modelling
4
modelling modern
4

Similar Publications

HOS15 impacts DIL9 protein stability during drought stress in Arabidopsis.

New Phytol

January 2025

Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.

HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15) acts as a substrate receptor of E3 ligase complex, which plays a negative role in drought stress tolerance. However, whether and how HOS15 participates in controlling important transcriptional regulators remains largely unknown. Here, we report that HOS15 physically interacts with and tightly regulates DROUGHT-INDUCED LIKE 19 (DIL9) protein stability.

View Article and Find Full Text PDF

Passive dehydration reduces muscle thickness after resistance exercise.

J Sports Sci

January 2025

Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.

Unlabelled: Dehydration-induced increased plasma osmolality (P) alters whole body fluid balance which could alter resistance exercise (RE) induced intramuscular (IM) fluid shift.

Purpose: The purpose of the current report was to investigate the effect of dehydration on RE-induced change in whole body fluid balance in resistance trained (RT) men.

Methods: Fourteen RT men performed two identical RE sessions, either in a hydrated (EUHY) or dehydrated (DEHY) state induced by a 24 hr fluid restriction.

View Article and Find Full Text PDF

Shunt dependence syndrome is a serious long-term complication characterized by symptoms and signs of increased intracranial pressure with normal-sized lateral ventricles after several years of arachnoid cyst-peritoneal shunting. It is easy to misdiagnose and overlook when combined with sinus stenosis, thus delaying treatment. Here, we present a 35-year-old man with an unexplained headache and binocular horizontal diplopia with high intracranial pressure.

View Article and Find Full Text PDF

Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis.

Dev Cell

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.

View Article and Find Full Text PDF

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!