Despite the extensive use of recycled polyethylene terephthalate (rPET) in food contact materials (FCMs), research on the presence of heavy metals (HMs) and rare earth elements (REEs) during various recycling stages (e.g., flakes, granules, and preforms) remains limited. This study aimed to address these gaps by validating a rapid and sensitive analytical method to quantify 26 HMs and 4 REEs in PET and rPET matrices. An ICP-MS method was validated per EURACHEM guidelines, assessing linearity, limits of detection (LOD), limits of quantification (LOQ), accuracy, and repeatability. The method was employed for initial screening of HMs and REEs classified as non-intentionally added substances (NIASs) in PET and rPET samples. The findings showed high accuracy and reliability, with recovery rates between 80% and 120%. Analysis revealed varying concentrations of HMs and REEs, with the highest levels in 100% rPET preforms, notably Zn, Cu, and Al among HMs, and La among REEs. The study identified critical contamination points during the recycling process, highlighting the need for targeted interventions. This research provides a crucial analytical framework for assessing HMs and REEs in PET and rPET, ensuring FCM safety compliance and supporting efforts to enhance rPET product safety, promoting public health protection and advancing the circular economy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395568PMC
http://dx.doi.org/10.3390/foods13172716DOI Listing

Publication Analysis

Top Keywords

hms rees
20
pet rpet
16
icp-ms method
8
rare earth
8
earth elements
8
rees pet
8
rpet
7
hms
6
rees
6
advancing analytical
4

Similar Publications

Amplified growth and heavy metal toxicity of Chlorococcum sp. from exposure to low-dose lanthanum(III).

J Hazard Mater

December 2024

School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

Rare earth elements (REEs) are extensively utilized in industry, agriculture, advanced materials and other fields, leading to their dispersion in water bodies as emerging contaminants. Meanwhile, the coexistence of REEs and heavy metals (HMs) has become a novel form of water contamination (REE-HM co-contamination), though scientists have limited understanding of its hazards. Here, Chlorococcum sp.

View Article and Find Full Text PDF
Article Synopsis
  • High-resolution typing of human leukocyte antigen (HLA) may enhance kidney transplantation by enabling selection of less immunogenic donors within a new 250-nautical mile allocation system.
  • A study matched 501 transplant candidates from the University of Toledo Medical Center with 4812 donors, achieving a 99.8% success rate in finding optimal matches, which significantly improved HLA immunogenicity scores compared to a historical cohort.
  • The results indicated that simulated transplants could lead to an increase in median graft survival from 13.4 years to 18.2 years, highlighting the benefits of the new donor matching approach for long-term patient outcomes.
View Article and Find Full Text PDF

Despite the extensive use of recycled polyethylene terephthalate (rPET) in food contact materials (FCMs), research on the presence of heavy metals (HMs) and rare earth elements (REEs) during various recycling stages (e.g., flakes, granules, and preforms) remains limited.

View Article and Find Full Text PDF

The occurrence and distribution of yttrium and rare earth elements (REYs), along with major elements and heavy metal(loid)s (HMs) in coal fly ash (CFA) from five coal-fired power plants (CFPPs), were analyzed, and the REY-associated ecological and health risks were assessed. The individual REYs in CFA were abundant in the following order: Ce > La > Nd > Y > Pr > Gd > Sm > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The total REY content ranged from 135 to 362 mg/kg, averaging 302 mg/kg.

View Article and Find Full Text PDF

Lanthanum promotes Solanum nigrum L. growth and phytoremediation of cadmium and lead through endocytosis: Physiological and biochemical response, heavy metal uptake and visualization.

Sci Total Environ

February 2024

School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China. Electronic address:

Rare earth elements (REEs) are important to enhance agricultural productivity. The utilization of phytoremediation as a green technology for addressing heavy metal (HMs) contamination in soil and wastewater has gained significant attention. In our research, we conducted indoor hydroponic experiments to examine the impacts of lanthanum (La) on the growth and enrichment capacity of Solanum nigrum L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!