A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinguishing word identity and sequence context in DNA language models. | LitMetric

Distinguishing word identity and sequence context in DNA language models.

BMC Bioinformatics

Biomedical Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universitat Dresden, Dresden, Germany.

Published: September 2024

Transformer-based large language models (LLMs) are very suited for biological sequence data, because of analogies to natural language. Complex relationships can be learned, because a concept of "words" can be generated through tokenization. Training the models with masked token prediction, they learn both token sequence identity and larger sequence context. We developed methodology to interrogate model learning, which is both relevant for the interpretability of the model and to evaluate its potential for specific tasks. We used DNABERT, a DNA language model trained on the human genome with overlapping k-mers as tokens. To gain insight into the model's learning, we interrogated how the model performs predictions, extracted token embeddings, and defined a fine-tuning benchmarking task to predict the next tokens of different sizes without overlaps. This task evaluates foundation models without interrogating specific genome biology, it does not depend on tokenization strategies, vocabulary size, the dictionary, or the number of training parameters. Lastly, there is no leakage of information from token identity into the prediction task, which makes it particularly useful to evaluate the learning of sequence context. We discovered that the model with overlapping k-mers struggles to learn larger sequence context. Instead, the learned embeddings largely represent token sequence. Still, good performance is achieved for genome-biology-inspired fine-tuning tasks. Models with overlapping tokens may be used for tasks where a larger sequence context is of less relevance, but the token sequence directly represents the desired learning features. This emphasizes the need to interrogate knowledge representation in biological LLMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395559PMC
http://dx.doi.org/10.1186/s12859-024-05869-5DOI Listing

Publication Analysis

Top Keywords

sequence context
20
token sequence
12
larger sequence
12
sequence
9
dna language
8
language models
8
overlapping k-mers
8
token
6
context
5
models
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!