NMOSD and MOGAD: an evolving disease spectrum.

Nat Rev Neurol

Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Published: October 2024

AI Article Synopsis

  • Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory CNS disease linked to aquaporin 4 (AQP4) autoantibodies, causing symptoms like optic neuritis and myelitis.
  • Some individuals show symptoms of NMOSD but lack AQP4-IgG, now categorized under MOG antibody-associated disease (MOGAD), which has different characteristics.
  • The article reviews the evolution of NMOSD and MOGAD, covering epidemiology, clinical features, imaging, and potential therapies for NMOSD that may benefit MOGAD patients.

Article Abstract

Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41582-024-01014-1DOI Listing

Publication Analysis

Top Keywords

nmosd mogad
16
nmosd
11
disease spectrum
8
nmosd relapsing
8
optic neuritis
8
neuritis myelitis
8
aqp4-igg-seropositive nmosd
8
mogad
6
disease
5
mogad evolving
4

Similar Publications

Some patients with neuromyelitis optica spectrum disorder (NMOSD)-like symptoms test negative for anti-aquaporin-4 (anti-AQP4) antibodies. Among them, a subset has antibodies targeting myelin oligodendrocyte glycoprotein (MOG), a condition now termed MOG antibody-associated disease (MOGAD). MOGAD shares features with NMOSD, like optic neuritis and myelitis, but differs in pathophysiology, clinical presentation, imaging findings, and biomarkers.

View Article and Find Full Text PDF

Deep learning MRI models for the differential diagnosis of tumefactive demyelination versus -wildtype glioblastoma.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (GMC, MM, YN, BJE), Department of Quantitative Health Sciences (PAD, MLK, JEEP), Department of Neurology (CBM, JAS, MWR, FSG, HKP, DHL, WOT), Department of Neurosurgery (TCB), Department of Laboratory Medicine and Pathology (RBJ), and Center for Multiple Sclerosis and Autoimmune Neurology (WOT), Mayo Clinic, Rochester, MN, USA; Dell Medical School (MFE), University of Texas, Austin, TX, USA.

Background And Purpose: Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and non-tumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality.

View Article and Find Full Text PDF
Article Synopsis
  • Optic neuritis (ON) is an acquired disorder of the optic nerve linked with demyelinating conditions and can present differently in children compared to adults.
  • The main concern for healthcare providers is the potential development of multiple sclerosis (MS) in patients with ON, which has led to a greater emphasis on distinguishing between MS and other demyelinating disorders like NMOSD and MOGAD.
  • The paper discusses a case of a child with severe MOGAD ON, detailing the clinical features, investigations, and treatment that resulted in complete visual recovery.
View Article and Find Full Text PDF

Background: Among white populations, a poly-specific antibody response against measles (M), rubella (R) and varicella zoster(Z) otherwise known as MRZR is seen in ∼70 % of MS and rarely in other demyelinating disorders. While the basis for MRZR is unclear, vaccination exposure / community acquired infections may have an influence on its frequency.

Objective: To determine the frequency and specificity of MRZR in MS and related disorders in a non- white population with historically low vaccinations and to contrast against oligoclonal bands (OCB).

View Article and Find Full Text PDF

Background: Recurrent attacks in neuromyelitis optica spectrum disorders (NMOSDs) or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) can lead to severe disability. We aimed to analyse the real-world use of immunotherapies in patients with NMOSD and MOGAD, focusing on changes in treatment strategies, effects on attack rates (ARR) and risk factors for attacks.

Methods: This longitudinal registry-based cohort study included 493 patients (320 with aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive NMOSD (65%), 44 with AQP4-IgG seronegative NMOSD (9%) and 129 MOGAD (26%)) with 1247 treatments from 19 German and one Austrian centre from the registry of the neuromyelitis optica study group (NEMOS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!