Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) - a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41582-024-01014-1 | DOI Listing |
Sci Rep
January 2025
Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Abassia, Cairo, Egypt.
Some patients with neuromyelitis optica spectrum disorder (NMOSD)-like symptoms test negative for anti-aquaporin-4 (anti-AQP4) antibodies. Among them, a subset has antibodies targeting myelin oligodendrocyte glycoprotein (MOG), a condition now termed MOG antibody-associated disease (MOGAD). MOGAD shares features with NMOSD, like optic neuritis and myelitis, but differs in pathophysiology, clinical presentation, imaging findings, and biomarkers.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Radiology (GMC, MM, YN, BJE), Department of Quantitative Health Sciences (PAD, MLK, JEEP), Department of Neurology (CBM, JAS, MWR, FSG, HKP, DHL, WOT), Department of Neurosurgery (TCB), Department of Laboratory Medicine and Pathology (RBJ), and Center for Multiple Sclerosis and Autoimmune Neurology (WOT), Mayo Clinic, Rochester, MN, USA; Dell Medical School (MFE), University of Texas, Austin, TX, USA.
Background And Purpose: Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and non-tumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality.
View Article and Find Full Text PDFCureus
November 2024
Ophthalmology, International Islamic University Malaysia, Kuantan, MYS.
J Neurol Sci
December 2024
Center for Advanced Neurological Research, Nitte University, Mangalore,India.
Background: Among white populations, a poly-specific antibody response against measles (M), rubella (R) and varicella zoster(Z) otherwise known as MRZR is seen in ∼70 % of MS and rarely in other demyelinating disorders. While the basis for MRZR is unclear, vaccination exposure / community acquired infections may have an influence on its frequency.
Objective: To determine the frequency and specificity of MRZR in MS and related disorders in a non- white population with historically low vaccinations and to contrast against oligoclonal bands (OCB).
J Neurol Neurosurg Psychiatry
December 2024
Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Recurrent attacks in neuromyelitis optica spectrum disorders (NMOSDs) or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) can lead to severe disability. We aimed to analyse the real-world use of immunotherapies in patients with NMOSD and MOGAD, focusing on changes in treatment strategies, effects on attack rates (ARR) and risk factors for attacks.
Methods: This longitudinal registry-based cohort study included 493 patients (320 with aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive NMOSD (65%), 44 with AQP4-IgG seronegative NMOSD (9%) and 129 MOGAD (26%)) with 1247 treatments from 19 German and one Austrian centre from the registry of the neuromyelitis optica study group (NEMOS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!