Mesenchymal stromal/stem cells (MSC) play a crucial role in promoting neovascularization, which is essential for wound healing. They are commonly utilized as an autologous source of progenitor cells in various stem cell-based therapies. However, incomplete MSC differentiation towards a vascular endothelial cell phenotype questions their involvement in an alternative process to angiogenesis, namely vasculogenic mimicry (VM), and the signal transducing events that regulate their in vitro priming into capillary-like structures. Here, human MSC were primed on top of Cultrex matrix to recapitulate an in vitro phenotype of VM. Total RNA was extracted, and differential gene expression assessed through RNA-Seq analysis and RT-qPCR. Transient gene silencing was achieved using specific siRNA. AG490, Tofacitinib, and PP2 pharmacological effects on VM structures were analyzed using the Wimasis software. In vitro VM occurred within 4 h and was prevented by the JAK/STAT3 inhibitors AG490 and Tofacitinib, as well as by the Src inhibitor PP2. RNA-Seq highlighted STAT3 as a signaling hub contributing to VM when transcripts from capillary-like structures were compared to those from cell monolayers. Concomitant increases in IL6, IL1b, CSF1, CSF2, STAT3, FOXC2, RPSA, FN1, and SNAI1 transcript levels suggest the acquisition of a combined angiogenic, inflammatory and epithelial-to-mesenchymal transition phenotype in VM cultures. Increases in STAT3, FOXC2, RPSA, Fibronectin, and Snail protein expression were confirmed during VM. STAT3 and RPSA gene silencing abrogated in vitro VM. In conclusion, in vitro priming of MSC into VM structures requires Src/JAK/STAT3 signaling. This molecular evidence indicates that a clinically viable MSC-mediated pseudo-vasculature process could temporarily support grafts through VM, allowing time for the host vasculature to infiltrate and remodel the injured tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399305 | PMC |
http://dx.doi.org/10.1038/s41598-024-72862-6 | DOI Listing |
Discov Med
December 2024
Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
The immune and musculoskeletal systems closely interplay in bone repair and regeneration. After bone injury, the body produces high levels of cytokines and signaling molecules to balance bone formation and resorption. Interleukin (IL)-17A, a cytokine expressed early in the inflammatory process, profoundly influences osteoprogenitor cell fate, thereby contributing to bone homeostasis.
View Article and Find Full Text PDFRNA Biol
December 2025
Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore.
Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Sublingual immunotherapy (SLIT) is an effective and injection-free route for allergen-specific immunotherapy (AIT). Mesenchymal stromal/stem cell (MSC)-derived exosomes (Exo) has been identified as a novel delivery platform with immunomodulatory capacities. In addition, targeting agents such as aptamers (Apt) have been extensively used for specific delivery approaches such as direct delivery of allergen formulations to dendritic cells (DC) to improve the efficacy of specific immunotherapy.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
São Paulo State University (UNESP), Botucatu Medical School (FMB), Botucatu, São Paulo 18.618-687, Brazil.
Women with gestational diabetes mellitus show a high risk of developing Gestational Diabetes Induced Myopathy (GDiM). GDiM is characterized by significant pelvic floor skeletal muscle atrophy and urinary incontinence. This study aimed to develop a natural rubber latex (NRL) based biodevice with mesenchymal/stromal stem cells (MSCs) for skeletal muscle regeneration for women with GDiM.
View Article and Find Full Text PDFJ Radiat Res
December 2024
Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
Exposure to ionizing radiation can induce harmful biological effects on the human body, particularly in cases of high-dose γ-irradiation affecting the gastrointestinal tract, bone marrow, skin and lung. Such exposures lead to lethal outcomes as individuals experience a breakdown in their immune system's ability to defend against pathogens, predisposing them to sepsis-induced multiple organ failures. Mesenchymal stromal/stem cells (MSCs) possess diverse biological characteristics, including immunomodulation, anti-inflammation and tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!