This paper presents the design and analysis of a high voltage gain converter utilizing a coupled inductor with reduced voltage stress, specifically for photovoltaic energy-based systems. The proposed converter employs a two-winding coupled inductor and voltage multiplier cells to achieve an increase in output voltage while mitigating voltage stress across semiconductor components. Additionally, the voltage multiplier cells function as voltage clamps for the power switch, further enhancing the converter's performance. The converter features a single switch design, which simplifies control, reduces cost, and improves reliability. Key advantages of the converter include a low component count, a common ground between input and output ports, and high efficiency. The converter's performance is thoroughly investigated through mode analysis and steady-state analysis. Comparative evaluations with similar converters are conducted to highlight the benefits and performance of the proposed design. To validate the theoretical analysis, a 125 W prototype with 26 V input and 200 V output voltages operating at a 50 kHz switching frequency is developed, and experimental results are presented, demonstrating the effectiveness and practicality of the proposed high voltage gain converter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399396 | PMC |
http://dx.doi.org/10.1038/s41598-024-72600-y | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFSoft Robot
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFACS Nano
January 2025
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
Manganese-based layer-structured transition metal oxides are considered promising cathode materials for future sodium batteries owing to their high energy density potential and industrial feasibility. The grain-related anisotropy and electrode/electrolyte side reactions, however, constrain their energy density and cycling lifespan, particularly at high voltages. Large-sized single-crystal O3-typed Na[NiMnCuTi]O was thus designed and successfully synthesized toward high-voltage and long-lifespan sodium batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!