This study presents an innovative approach to eco-friendly synthesis and utilization of copper nanoparticles (CuNPs) for photocatalytic applications, employing waste corn husk fibers as sustainable catalyst support. The synthesis of CuNPs was achieved through a green synthesis method utilizing myrtle extract. Subsequently, the remarkable photocatalytic activity of the CuNPs explored (76% removal efficiency of Crystal Violet), showcased their potential in environmental remediation applications. Furthermore, the immobilization of CuNPs onto waste corn husk fibers was investigated, aiming to develop a novel composite material with enhanced catalytic performance. A distinctive approach was introduced by immobilizing CuNPs onto fibers derived from corn husks, and waste biomass material, leading to a significant enhancement in photocatalytic efficiency, surpassing 95.1%. Furthermore, bioactivity evaluation studies revealed the significant antioxidant, antidiabetic, DNA fragmentation, cell viability, antibiofilm and antimicrobial properties of CuNPs. The antioxidant ability was determined at 100 mg/L as 87.12%. The most powerful antimicrobial activity of CuNP was found as a MIC value of 8 mg/L against E. faecalis. The cell viability inhibition of CuNP was 90.05% at 20 mg/L. CuNP exhibited biofilm inhibition activity at different concentrations. The antibiofilm ability was investigated against Staphylococcus aureus compared to Pseudomonas aureginosa. While the DNA cleavage activity of CuNP observed double-strand breaks at 50 and 100 mg, complete fragmentation occurred at 200 mg concentrations. The bioactivity of the synthesized CuNPs shed light on their potential biomedical applications. The synthesized CuNPs are characterized using various analytical techniques to elucidate their structural and morphological properties. Fourier-transform infrared (FTIR) analysis provided insights into the chemical composition and surface properties of the synthesized materials. EDS analysis confirmed their successful integration into waste corn husk fibers. Overall, this interdisciplinary study highlights the potential of CuNPs immobilized on waste corn husk fibers for addressing environmental pollution, advancing sustainable technologies and paving the way for the development of efficient catalysts with diverse functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!