MoS coupled with ball milling co-modified sludge biochar to efficiently activate peroxymonosulfate for neonicotinoids degradation: Dominant roles of SO, O and surface-bound radicals.

Environ Res

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK. Electronic address:

Published: December 2024

An efficient catalyst of molybdenum disulfide (MoS) coupled with ball milling modified sludge biochar (BMSBC) was prepared to efficiently activate peroxymonosulfate (PMS) for neonicotinoids elimination. As expected, 95.1% of imidacloprid (IMI) was degraded by PMS/BMSBC system within 60 min and it was accompanied by the outstanding mineralization rate of 71.9%. The superior pore structures, rich defects, oxygen-containing functional groups and grafted MoS on BMSBC offered excellent activation performance for PMS. The influencing factor experiments demonstrated that PMS/BMSBC system performed high anti-interference to wide pH range and background constituents (e.g., inorganic ions and humic acid). Quenching experiments and electron paramagnetic resonance analysis revealed that SO, O, and surface-bound radicals played critical roles in IMI degradation. Electron donors on biochar activated PMS, producing surface radicals. The lone pair electrons within the Lewis basic site of C=O on BMSBC enhanced PMS decomposition by facilitating the cleavage of the -O-O- bond in PMS to release O. The activation process of PMS by MoS accelerated the oxidation of Mo (IV) to Mo (VI) to generate SO. Based on the transformed products (TPs), four degradation pathways of IMI in PMS/BMSBC system were suggested, and all TPs toxicity levels were lower than that of IMI by ECOSAR analysis. Additionally, BMSBC exhibited outstanding sustainable catalytic activity towards PMS activation with the well accepted degradation rate of 71.3% for IMI even after five reuse cycles. PMS/BMSBC system also exhibited satisfactory degradation rates (>71.8%) for IMI in various real waters (e.g., sewage effluent and livestock wastewater). Furthermore, PMS/BMSBC system also offered a favorable broad-spectrum elimination performance for other typical neonicotinoids (e.g., thiamethoxam, clothianidin, thiacloprid) with the degradation rates over 98%. This study has developed a desirable neonicotinoids purification technology in view of its high degradation/mineralization rate, outstanding detoxification performance, satisfied anti-interference to ambient conditions and sustainable sludge management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119983DOI Listing

Publication Analysis

Top Keywords

pms/bmsbc system
20
mos coupled
8
coupled ball
8
ball milling
8
sludge biochar
8
efficiently activate
8
activate peroxymonosulfate
8
surface-bound radicals
8
degradation rates
8
pms
7

Similar Publications

MoS coupled with ball milling co-modified sludge biochar to efficiently activate peroxymonosulfate for neonicotinoids degradation: Dominant roles of SO, O and surface-bound radicals.

Environ Res

December 2024

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK. Electronic address:

An efficient catalyst of molybdenum disulfide (MoS) coupled with ball milling modified sludge biochar (BMSBC) was prepared to efficiently activate peroxymonosulfate (PMS) for neonicotinoids elimination. As expected, 95.1% of imidacloprid (IMI) was degraded by PMS/BMSBC system within 60 min and it was accompanied by the outstanding mineralization rate of 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!