Glioma nanotherapy: Unleashing the synergy of dual-loaded DIM and TMZ.

Int J Pharm

Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India. Electronic address:

Published: November 2024

Glioblastoma multiforme (GBM) is a highly aggressive form of primary brain tumor in adults, which unfortunately has an abysmal prognosis and poor survival rates. The reason behind the poor success rate of several FDA-approved drug is mainly attributed to insufficient drug distribution to the tumor site across the blood-brain barrier (BBB) and induction of resistance. In this study, we have developed a novel nanotherapeutic approach to achieve our goal. PLGA-based nanoencapsulation of both Temozolomide (TMZ) and EGFR inhibitor 3,3'-diindoyl methane (DIM) in a combinatorial approach enhances the delivery of them together. Their synergistic mode of actions, significantly enhances the cytotoxic effect of TMZ in vitro and in vivo. Moreover, the dual-loaded nanoformulation works more efficiently on DNA damage and apoptosis, resulting in a several-fold reduction in tumor burden in vivo, systemic drug toxicity, and increased survival. These findings suggest the preclinical potential of this new treatment strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124697DOI Listing

Publication Analysis

Top Keywords

glioma nanotherapy
4
nanotherapy unleashing
4
unleashing synergy
4
synergy dual-loaded
4
dual-loaded dim
4
dim tmz
4
tmz glioblastoma
4
glioblastoma multiforme
4
multiforme gbm
4
gbm highly
4

Similar Publications

Glioma nanotherapy: Unleashing the synergy of dual-loaded DIM and TMZ.

Int J Pharm

November 2024

Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India. Electronic address:

Glioblastoma multiforme (GBM) is a highly aggressive form of primary brain tumor in adults, which unfortunately has an abysmal prognosis and poor survival rates. The reason behind the poor success rate of several FDA-approved drug is mainly attributed to insufficient drug distribution to the tumor site across the blood-brain barrier (BBB) and induction of resistance. In this study, we have developed a novel nanotherapeutic approach to achieve our goal.

View Article and Find Full Text PDF

Stemness, invasion, and immunosuppression modulation in recurrent glioblastoma using nanotherapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

August 2024

Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.

The recurrent nature of glioblastoma negatively impacts conventional treatment strategies leading to a growing need for nanomedicine. Nanotherapeutics, an approach designed to deliver drugs to specific sites, is experiencing rapid growth and gaining immense popularity. Having potential in reaching the hard-to-reach disease sites, this field has the potential to show high efficacy in combatting glioblastoma progression.

View Article and Find Full Text PDF

Novel hybrid compounds of sclareol and doxorubicin as potential anticancer nanotherapy for glioblastoma.

Biomed Pharmacother

May 2024

Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, Belgrade 11108, Serbia. Electronic address:

Two novel hybrid compounds, CON1 and CON2, have been developed by combining sclareol (SC) and doxorubicin (DOX) into a single molecular entity. These hybrid compounds have a 1:1 molar ratio of covalently linked SC and DOX. They have demonstrated promising anticancer properties, especially in glioblastoma cells, and have also shown potential in treating multidrug-resistant (MDR) cancer cells that express the P-glycoprotein (P-gp) membrane transporter.

View Article and Find Full Text PDF

Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis.

View Article and Find Full Text PDF

(1) Background: Glioblastoma (GBM) is categorized as a grade IV astrocytoma by the World Health Organization (WHO), representing the most aggressive and prevalent form of glioma. It presents a significant clinical challenge, with limited treatment options and poor prognosis. This systematic review evaluates the efficacy and safety of various nanotherapy approaches for GBM and explores future directions in tumor management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!