Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Candida albicans (C. albicans) biofilm infections are quite difficult to manage due to their resistance against conventional antifungal drugs. To address this issue, there is a desperate need for new therapeutic drugs. In the present study, a green and efficient protocol has been developed for the synthesis of 2-amino-4H-pyran-3-carbonitrile scaffolds 4a-i, 6a-j, and 8a-g by Knoevenagel-Michael-cyclocondensation reaction between aldehydes, malononitrile, and diverse enolizable C-H activated acidic compounds using guanidinium carbonate as a catalyst either under grinding conditions or by stirring at room temperature. This protocol is operationally simple, rapid, inexpensive, has easy workup and column-free purification. A further investigation of the synthesized compounds was conducted to examine their antifungal potential and their ability to inhibit the growth and development of biofilm-forming yeasts like fungus C. albicans. According to our findings, 4b, 4d, 4e, 6e, 6f, 6g, 6i, 8c, 8d, and 8g were found to be active and potential inhibitors for biofilm infection causing C. albicans. The inhibition of biofilm by active compounds were observed using field emission scanning electron microscopy (FESEM). Biofilm inhibiting compounds were also tested for in vitro toxicity by using 3T3-L1 cell line, and 4b, 6e, 6f, 6g, 6i, 8c, and 8d were found to be biocompatible. Furthermore, the in silico ADME descriptors revealed drug-like properties with no violation of Lipinski's rule of five. Hence, the result suggested that synthesized derivatives could serve as a useful aid in the development of novel antifungal compounds for the treatment of fungal infections and virulence in C. albicans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.106926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!