Alzheimer's Disease (AD), reported for the first time in 1906, is a common disease that remains incurable to this day. In the past, a family of treatments using Cu(II) chelators failed during clinical trials, evidencing the importance of pre-clinical studies. In this work, we performed electrochemical characterisation of TDMQ20, a new potential drug against AD, using electrochemistry and spectroelectrochemistry. On the basis of voltammetry, we determined that TDMQ20 undergoes a two-step irreversible oxidation process and a one-step irreversible reduction process. Both oxidation and reduction reactions are pH-sensitive. Bidimensional UV-Vis spectroelectrochemistry (UV-Vis-SEC) allowed us to confirm that oxidation of TDMQ20 can occur both on the aliphatic chain and on the aromatic ring. The results expand the knowledge of the TDMQ20 redox activity in the human body which is important from the point of view of the toxicity of the proposed therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2024.108814 | DOI Listing |
Bioelectrochemistry
February 2025
Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain.
Alzheimer's Disease (AD), reported for the first time in 1906, is a common disease that remains incurable to this day. In the past, a family of treatments using Cu(II) chelators failed during clinical trials, evidencing the importance of pre-clinical studies. In this work, we performed electrochemical characterisation of TDMQ20, a new potential drug against AD, using electrochemistry and spectroelectrochemistry.
View Article and Find Full Text PDFACS Chem Neurosci
January 2021
School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China.
Besides targeting amyloid or tau metabolisms, regulation of redox metal ions is a recognized therapeutic target for Alzheimer's disease (AD). Based on the bioinorganic chemistry of copper, we designed specific chelators of copper(II) (TDMQs) insight to regulate copper homeostasis in the brain and to inhibit the deleterious oxidative stress catalyzed by copper-amyloid complexes. An oral treatment by TDMQ20 was able to fully reverse the cognitive and behavioral impairment in three different murine models, two nontransgenic models mimicking the early stage of AD and a transgenic model representing a more advanced stage of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!