A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advanced understanding of the natural forces accelerating aging and release of black microplastics (tire wear particles) based on mechanism and toxicity analysis. | LitMetric

Advanced understanding of the natural forces accelerating aging and release of black microplastics (tire wear particles) based on mechanism and toxicity analysis.

Water Res

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.

Published: November 2024

AI Article Synopsis

  • Tire wear particles (TWPs) are tiny pieces of black plastic that come from tires and can pollute water, but people often don't pay attention to them.
  • This study looked at how natural things like light and heat change TWPs over time and how they release harmful substances into the water.
  • The researchers found that aging TWPs can become more dangerous, releasing heavy metals and toxins that could hurt small organisms in water.

Article Abstract

Currently, tire wear particles (TWPs), a typical type of black microplastics (MPs), are frequently overlooked as the major source of MPs in aquatic environments. TWPs are widely distributed and exhibit complex environmental behaviors. However, how natural forces affect the aging and release behavior of TWPs at the nano(micro)scale remains inadequately explored. This study systematically investigated the aging behavior and mechanism of TWPs under the action of simulated natural light and high-temperature in both dry and wet environments, as well as the effect of aging treatment on the released leachate. The findings demonstrated that aging treatment significantly altered the physicochemical properties of TWPs, including chain scission and surface oxidation, and facilitated the release of heavy metals and organic additives in the meantime. In particular, the leaching concentration of Zn exhibited a positive linear relationship with exposure time. In the thermal-aging process, the oxidation of TWPs was primarily caused by superoxide anion (O). During the photo-aging exposure, TWPs exhibited heightened electron-donating capacity, resulting in the formation of more O and singlet oxygen (O) to attack TWPs. Moreover, the analysis of leachate produced under light and high-temperature conditions suggested that heavy metals exerted low ecological risks in water. Nonetheless, the photo-aging process enhanced the toxicity of released leachate to L929 cells, which could be attributed to highly toxic additive transformation products (such as HMMM-411 and 6PPD-Q) and more heavy metals. These findings shed light on the fate of TWPs and the ecological risks posed by aged TWPs in aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122409DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
twps
10
natural forces
8
aging release
8
black microplastics
8
tire wear
8
wear particles
8
aquatic environments
8
light high-temperature
8
aging treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!