Clostridium perfringens (C. perfringens) causes avian necrotic enteritis, leading to huge economic losses to the poultry industry. This pathogen induces host immunosuppression; however, the molecular mechanism is still unclear. Thus, we established a laying hen infection model to explore this mechanism. We randomly divided 20 one-old-day laying hens into the control and infection groups. The infection group was infected intragastrically with 1 × 10 colony-forming units of C. perfringens in 1 mL of sterile phosphate-buffered saline (PBS) once a day from d 17 to 20; the control group received the same volume of PBS without the bacterium. Twenty-four hours after the last challenge, we sacrificed the laying hens and collected the jejunum for analysis. The infection group presented alterations in blood biochemical parameters and necrotic lesion scores as well as damage to the jejunum. Proteomics revealed 427 upregulated and 291 downregulated proteins in the infection group. In the infection group, CD3, CD4, and CD8 messenger RNA expression (mRNA) expression was decreased; LAMTOR1 and mTORC1 mRNA expression was increased; CD276 protein expression was enhanced; and the PI3K/Akt/MMP pathway was activated in jejunum of laying hens. This is the first study to report CD276 expression in the jejunum related to immunosuppression in a laying hen model of necrotic enteritis. It provides some new key targets to potentially control avian necrotic enteritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417168 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.104216 | DOI Listing |
Int Microbiol
December 2024
Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki City, Kanagawa Prefecture, 210-8681, Japan.
Bacterial infections causing necrotic enteritis and diarrhea pose a considerable economic loss to the animal industry. Using mannose oligosaccharides as competitive exclusion agents is an alternative method to antibiotic growth promoters; however, these materials are rapidly metabolized by gut microbiota, posing a challenge in sustaining their efficacy. The aim of this study was to identify an agglutination material that is effective against pathogens.
View Article and Find Full Text PDFVet Sci
December 2024
Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram 4225, Bangladesh.
Despite the significant growth in Sonali chicken production across Bangladesh, inadequate disease surveillance and control measures along with indiscriminate antimicrobial use remain major challenges to the sector. In this study, we evaluated the disease burden and antimicrobial prescription patterns of Sonali chickens in Bangladesh using a web-based data recording system from 2020 to 2021 and analyzed 1690 cases. The diagnoses recorded in the system were presumptive, as they were based on clinico-epidemiological history, clinical signs, and gross necropsy findings noted by registered veterinarians.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China. Electronic address:
It is urgent to develop effective antibiotic alternatives for the control of subclinical necrotic enteritis (NE) in chickens after in-feed antibiotics have been banned. The current study investigated the efficacy of drinking water supplemented with essential oils and organic acids mixtures (EOA) on growth performance and intestinal health of broilers challenged with necrotic enteritis (NE). A total of 360 one-day-old Arbor Acres male broilers were randomly divided into 5 treatment groups, including non-challenged control group (T0), challenged NE group (T1), and challenged NE chickens treated with 0.
View Article and Find Full Text PDFPoult Sci
December 2024
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA. Electronic address:
With increasing regulations restricting antibiotic use in animal feed, the need for alternative strategies to prevent and manage necrotic enteritis (NE) has become imperative. As a result, developing effective vaccines has emerged as a top priority for broiler chicken health management. Coccidial infections are a well-established predisposing factor for NE, underscoring the importance of controlling coccidiosis to help mitigate NE outbreaks.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, 106, Taiwan. Electronic address:
The pathogenesis of necrotic enteritis (NE) involves complex gene regulation at both the bacterial cell and host tissue levels, yet many aspects remain incompletely understood. This study aims to compare the differential transcriptome of the netB-positive Clostridium perfringens strain, CP54, before and after infection. Differentially expressed genes and pathways were also examined in jejunal tissues from CP54-induced and CP54-Eimeria coinfected NE models to identify potential targets for mitigating NE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!