In response to the pervasive issue of herbicide pollution in environmental water bodies, particularly from herbicides used extensively in agriculture, traditional chemical-based water quality analysis methods have proven costly and time-consuming, often failing to meet regulatory standards. To overcome these limitations, global environmental agencies have turned to rapidly-growing species like duckweed as bioindicators for herbicide and pesticide contamination. However, conventional biological assessment methods, such as the 168-h duckweed growth inhibition test, are slow and lack real-time monitoring capabilities. To address this challenge, we developed an innovative approach by integrating opto-mechanical technology with duckweed to create a cost-effective biosensor for herbicide detection, priced under $10 USD per system. This advancement allows for the rapid detection of herbicide impacts on duckweed growth within just 48 h, significantly improving upon traditional methods. Our biosensor achieves detection limits of 10 ppm (p < 0.05) for glyphosate and 1 ppm (p < 0.05) for glufosinate, both prominent herbicides globally. This mini-biosensing platform offers a practical alternative to the official method, which requires 168 h and higher thresholds (36.4 ppm for glyphosate and 34.0 ppm for glufosinate) for routine environmental analysis. Thus, these duckweed-based optical biosensors represent a promising advancement in environmental monitoring, enhancing accessibility and efficacy for widespread adoption globally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!