Enantioenriched monofluoroalkenes are important structural motifs in life science and functional materials. To date, only limited strategies were reported for the synthesis of monofluoroalkenes with stereogenic carbon centers; the axially chiral counterpart is still highly desirable. Herein, we report Ni-catalyzed defluorinative cross-electrophile coupling of -difluoroalkenes with biaryl electrophiles for the synthesis of axially chiral monofluoroalkenes. The resulting axially chiral monofluoroalkenes are formed with excellent regio- and stereoselectivities. Synthetic transformation of these axially enantioenriched monofluoroalkenes was also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.4c03119 | DOI Listing |
Dalton Trans
January 2025
Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
A deeper understanding of the mechanisms underlying transition metal-catalyzed transformation is crucial for developing innovative strategies to synthesize chiral organoselenium compounds. In this study, we developed and investigated a three-layer chirality relay model for the rhodium-catalyzed asymmetric hydroselenation of alkenes through density functional theory (DFT) calculations. In the back layer of this model, the four bulky substituents on the phosphorus atom of the bidentate chiral MeO-BIPHEP ligand were positioned on axial and equatorial bonds, thereby influencing the configuration of the middle layer.
View Article and Find Full Text PDFOrg Lett
January 2025
Taizhou Research Institute, Southern University of Science and Technology, Taizhou 318014, Zhejiang, China.
Organocatalytic enantioselective formal nucleophilic substitution reactions of α-(2-hydroxynaphthalen-8-yl)propargyl alcohols with 1-(1-indol-3-yl)naphthalen-2-ols have been established for the first time. With the aid of a suitable chiral phosphoric acid, alkynyl 8-methylenenaphthalen-2(8)-one was formed in situ from the corresponding α-(2-hydroxynaphthalen-8-yl)propargyl alcohol, followed by enantioselective 1,6-conjugate additions of 1-(1-indol-3-yl)naphthalen-2-ols to afford a number of enantioenriched (,)-2,3-disubstituted indoles in 50-80% yields with 81-93% ee and (,)-2,3-disubstituted indoles in 18-40% yields with 79-96% ee. Notably, these nucleophilic substitution products were characterized by the presence of functional groups, including indole, naphthol, and alkynyl units, while exhibiting both axial and central chirality.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China.
An -heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of alkynyl acylazoliums with benzothiazole derivatives has been developed for the divergent synthesis of axially chiral triaryl 2-pyranones and fused 2-pyridones. The regioselectivity of this protocol depends on the structure of benzothiazoles with three different nucleophilic centers. The obtained axially chiral frameworks represent a new class of arylheterocycle atropisomers, which may be potentially useful in medicinal chemistry.
View Article and Find Full Text PDFChem Asian J
January 2025
Nanjing University, School of Chemistry and Chemial Engineering, 163 Xianlin Avenue, 210023, Nanjing, CHINA.
Axial chiral biaryl skeletons are widely found in biologically active molecules, catalysts and chiral functional materials. However, highly catalytic stereoselective synthesis of tetra-ortho-substituted biaryls remains a challenging task. In this paper, we describe an efficient approach for construction of axially tetra-ortho-substituted biaryls via Suzuki-Miyaura coupling in the presence of a chiral monophosphate ligand developed by ourselves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!