The inherent metal elements and structures of Prussian blue analogue (PBA) nanozymes have restricted their enzyme-mimicking activity. Therefore, the rational regulation of PBA nanozymes to improve their catalytic activity is highly desirable for biosensing applications. Herein, we propose a structure remodeling strategy to construct an open-cage Fe PBA-anchored NiFePBA (NiFe@Fe bis-PBA) nanozyme with significantly enhanced enzyme-mimicking activity. The formation process and mechanism for this bis-PBA nanozyme were studied in detail. Specifically, a cubic NiFePBA precursor was first synthesized and modified with polyvinylpyrrolidone (PVP). With the aid of hydrochloric acid, the added potassium ferricyanide was reduced by PVP and re-coordinated on the surface of NiFePBA to form the NiFe@Fe bis-PBA nanozyme with a special open-cage core-shell structure. The resultant NiFe@Fe bis-PBA nanozyme was further exploited to immobilize secondary antibodies, serving as a novel signal probe for developing highly sensitive electrochemical immunosensors for monitoring tumor markers. The constructed electrochemical immunosensor possesses a very wide linear range of 0.005-100 ng/mL and a low detection limit of 0.89 pg/mL for alpha-fetoprotein with high specificity and acceptable reproducibility and stability. This work offers a general and promising strategy for remodeling PBA nanozymes with a very favorable structure and metal element distribution, which enhances their enzyme-mimicking properties for applications in different fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c02995DOI Listing

Publication Analysis

Top Keywords

bis-pba nanozyme
16
pba nanozymes
12
nife@fe bis-pba
12
structure remodeling
8
remodeling strategy
8
tumor markers
8
enzyme-mimicking activity
8
structure
4
strategy open-cage
4
open-cage nife@fe-bis-pba
4

Similar Publications

The inherent metal elements and structures of Prussian blue analogue (PBA) nanozymes have restricted their enzyme-mimicking activity. Therefore, the rational regulation of PBA nanozymes to improve their catalytic activity is highly desirable for biosensing applications. Herein, we propose a structure remodeling strategy to construct an open-cage Fe PBA-anchored NiFePBA (NiFe@Fe bis-PBA) nanozyme with significantly enhanced enzyme-mimicking activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!