Alcohols are the most commercially abundant, synthetically versatile and operationally convenient functional groups in organic chemistry. Therefore, a strategy that utilizes hydroxy-containing compounds to develop novel bond disconnection and formation process would achieve molecular diversity. Herein, a deconstructive strategy for the generation of quinoxalin-2(1H)-one derivatives has been developed from alcohol precursors via oxy-radical-induced β-fragmentation. Additionally, 1,5-HAT and deoxygenation by P(III) along with oxy-radical were demonstrated as alternative pathways for this transformation. Furthermore, with the deep-seated reorganization of a few terpenes carbon framework, a unique activity with inhibition against the growth of pathogenic fungi was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.4c01898 | DOI Listing |
J Org Chem
December 2024
Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China.
A catalyst-free photoinduced deconstructive fluorosulfonylation cascade of spiro dihydroquinazolinones with DABSO and NFSI is reported. This protocol features mild reaction conditions, good yields and excellent functional group tolerance, providing a practical approach to the quinazolin-4(1)-one-functionalized aliphatic sulfonyl fluorides. In addition, the ease of gram-scale synthesis and the versatility of the SuFEx exchange highlight the application potential of this protocol.
View Article and Find Full Text PDFJ Org Chem
October 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
Alcohols are the most commercially abundant, synthetically versatile and operationally convenient functional groups in organic chemistry. Therefore, a strategy that utilizes hydroxy-containing compounds to develop novel bond disconnection and formation process would achieve molecular diversity. Herein, a deconstructive strategy for the generation of quinoxalin-2(1H)-one derivatives has been developed from alcohol precursors via oxy-radical-induced β-fragmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!