Pinellia ternata (Thunb.) Breit is an important traditional Chinese medicine. In North China, conventional flat planting of P. ternate is prone to root rot during the rainy season, leading to severe yield loss. Variations in planting patterns (e.g., ridge planting) can effectively alleviate this situation. However, the relationship between planting patterns and the changes induced by rhizosphere microbiome still needs to be determined. In this study, we clarified the effect of ridge planting on the yield of P. ternata and rhizosphere microbial community using high-throughput amplicon sequencing of 16S rRNA. Field experiments showed that ridge planting could increase the yield of P. ternata by 72.69% compared with flat planting. The high-throughput sequencing results demonstrated that fungal and bacterial communities in rhizosphere siols of flat and ridge planting showed obvious difference in diversity, structure, relative abundance, and community composition. The fungal phyla Zygomycota, Basidiomycota, Glomeromycota, and the bacterial phyla Chlamydiae, Tenericutes, and Hydrogenedentes were present in a higher relative abundance in the rhizosphere of ridge planting. Adonis multivariate analysis of variance results showed that 29 bacterial genera were significantly up/down-regulated, and only 4 fungal genera were changed considerably in ridge planting soil, indicating that the bacterial community composition varied significantly between the two treatments. Correlation analysis revealed that the yield of P. ternata was positively correlated with fungal genera Emericellopsis while negatively correlated with bacterial genera Acetobacter, Iamia, and fungal genera Thielavia. Overall, this study showed that ridge cropping significantly impacts the diversity and composition of the rhizosphere microbiome. It creates an environment favorable for crop growth and can be an effective planting strategy for P. ternata in areas with irrigation and high monsoon rainfall in North China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398693 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304898 | PLOS |
BMC Plant Biol
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Root system architecture (RSA) plays an important role in plant adaptation to drought stress. However, the genetic basis of RSA in sorghum has not been adequately elucidated. This study aimed to investigate the genetic bases of RSA traits through genome-wide association studies (GWAS) and determine genomic prediction (GP) accuracy in sorghum landraces at the seedling stage.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Ave, Ames, IA, 50010, USA.
Background: Mycobacterium bovis BCG is the human tuberculosis vaccine and is the oldest vaccine still in use today with over 4 billion people vaccinated since 1921. The BCG vaccine has also been investigated experimentally in cattle and wildlife by various routes including oral and parenteral. Thus far, oral vaccination studies of cattle have involved liquid BCG or liquid BCG incorporated into a lipid matrix.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Economics, University of Oregon, Eugene, OR 97403.
The advent of herbicide-tolerant genetically modified (GM) crops spurred rapid and widespread use of the herbicide glyphosate throughout US agriculture. In the two decades following GM-seeds' introduction, the volume of glyphosate applied in the United States increased by more than 750%. Despite this breadth and scale, science and policy remain unresolved regarding the effects of glyphosate on human health.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Plant Pathology Laboratory, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Winchester, Virginia, USA.
Unlabelled: Apple bitter rot is caused by various Colletotrichum spp. that threaten apple production globally resulting in millions of dollars in damage annually. The fungus causes a decline in fruit quality and yield, eventually rotting the fruit and rendering it inedible.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
Chemical movement through soil is an important process in agriculture and ecology. Observing the spatial and temporal dynamics of these processes using conventional chemical ecology methods requires techniques that are destructive and/or lack resolution. Neutron radiography has the capability to allow chemical motion through sand/soil to be tracked with high spatial and temporal resolution, and we show that it allows for the motion of hydrophobic and hydrophilic chemicals to be distinguished.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!