Investigation on Junction Contacts of Semiconducting Carbon Nanotube Networks Using Conductive Atomic Force Microscopy.

ACS Appl Mater Interfaces

State Key Laboratory for Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

Published: September 2024

Semiconductor single-walled carbon nanotube (s-SWNT) networks have gained prominence in electronic devices due to their cost-effectiveness, relatively production-naturality, and satisfactory performance. Configuration, density, and resistance of SWNT-SWNT junctions are considered crucial factors influencing the overall conductivity of s-SWNT networks. In this study, we present a method for inferring the lower bounds of the SWNT-SWNT junction resistance in s-SWNT networks based on conductive atomic force microscopy TUNA images. This method further enables the proposal of a classification for SWNT-SWNT junctions based on the current behavior relative to their surroundings. The three types of SWNT-SWNT junctions are denoted as (i) true contact (T), (ii) poor contact (P), and (iii) false contact (F). Of them, the true and poor contacts, respectively, represent good and poor electrical contact for the subject SWNT-SWNT junctions whose electrical conductivity hardly improves under external tip pressure, while that of the false contact can be further improved by external pressure. Statistical analysis demonstrates that while T-type junctions make a significant contribution to network conductivity, their proportion accounts for only approximately 40%. The P-type and F-type junctions, which constitute over 60% of the total, may be a contributing factor that constrains the overall conductivity of the s-SWNT networks. The height ratio of the junction to the sum of two SWNTs was also observed to exhibit variations among the three types. Finally, we propose a three-dimensional model to elucidate the formation mechanism underlying each type of junction. The present study provides insights into the performance of spontaneous contacts between s-SWNTs in the networks, and the systematic image acquisition and junction classification processes may provide support for future advancements in these networks.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c09412DOI Listing

Publication Analysis

Top Keywords

s-swnt networks
16
swnt-swnt junctions
16
carbon nanotube
8
conductive atomic
8
atomic force
8
force microscopy
8
conductivity s-swnt
8
three types
8
false contact
8
external pressure
8

Similar Publications

Investigation on Junction Contacts of Semiconducting Carbon Nanotube Networks Using Conductive Atomic Force Microscopy.

ACS Appl Mater Interfaces

September 2024

State Key Laboratory for Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

Semiconductor single-walled carbon nanotube (s-SWNT) networks have gained prominence in electronic devices due to their cost-effectiveness, relatively production-naturality, and satisfactory performance. Configuration, density, and resistance of SWNT-SWNT junctions are considered crucial factors influencing the overall conductivity of s-SWNT networks. In this study, we present a method for inferring the lower bounds of the SWNT-SWNT junction resistance in s-SWNT networks based on conductive atomic force microscopy TUNA images.

View Article and Find Full Text PDF

In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes.

View Article and Find Full Text PDF

Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed "Internet of Things" network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices).

View Article and Find Full Text PDF

Effect of Polymer Gate Dielectrics on Charge Transport in Carbon Nanotube Network Transistors: Low-k Insulator for Favorable Active Interface.

ACS Appl Mater Interfaces

November 2016

Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3-ga, Jung-gu, Seoul 100-715, Republic of Korea.

Article Synopsis
  • Charge transport in carbon nanotube network transistors is affected by the type of gate dielectric used, which influences device performance.
  • This study compares three polymer insulators with different dielectric constants (CYTOP, PMMA, and P(VDF-TrFE-CTFE)) in semiconducting carbon nanotube transistors, revealing that the low-permittivity dielectric (CYTOP) produces the best charge mobility.
  • The findings show that lower-k dielectrics result in better charge transport efficiency and operational stability, while high-k dielectrics suffer due to energetic disorder from randomly oriented dipoles, leading to poorer device performance.
View Article and Find Full Text PDF

Gate-Free Electrical Breakdown of Metallic Pathways in Single-Walled Carbon Nanotube Crossbar Networks.

Nano Lett

September 2015

Department of Chemistry and ‡Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States.

Aligned single-walled carbon nanotubes (SWNTs) synthesized by the chemical vapor deposition (CVD) method have exceptional potential for next-generation nanoelectronics. However, the coexistence of semiconducting (s-) and metallic (m-) SWNTs remains a considerable challenge since the latter causes significant degradation in device performance. Here we demonstrate a facile and effective approach to selectively break all m-SWNTs by stacking two layers of horizontally aligned SWNTs to form crossbars and applying a voltage to the crossed SWNT arrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!