In order to meet the increasing demand of high-performance control in industrial production, a new sliding mode variable structure control algorithm, Asymptotic Sliding Mode Control (ASMC), is designed in this study to solve the serious chattering problem of sliding mode control. Firstly, a traditional sliding mode exponential approximation law control model and a state space and control function are constructed based on sliding mode control. Secondly, by eliminating the jitter factor, ASMC algorithm is combined with sliding mode control to achieve precise control of permanent magnet synchronous motor (PMSM) and improve its performance. The experimental results indicated that in the simulation experiment, the research system tended to stabilize within 0.2-0.3 seconds, and the system chattering was significantly suppressed. And its output was smoother, the jitter amplitude was significantly reduced by 1/3, and the output torque was more stable. In addition, when the parameter H0 changed to 2H0, the overall speed curve did not change much, with only a slight overshoot. The overshoot was only 2.8%, and the change amplitude was maintained at around 25r/min, indicating that the research system had strong self stability performance. In actual experiments, the current command oscillation of the research system was significantly reduced. The local graph showed that the output fluctuation amplitude of the asymptotic approach law actual control was significantly smaller under no-load disturbance. When the H0 changed towards 2H0, the actual adjustment time was about 0.1 seconds, which was consistent with the simulation experiment. Therefore, the contribution of the research is that the ASMC algorithm can suppress the chattering problem of the system and improve the approaching speed, thus improving the speed regulation quality of the system. This new algorithm has great theoretical and practical significance for improving the performance of PMSM, and is practical in the actual vector control system of PMSM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398649 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308417 | PLOS |
ISA Trans
January 2025
School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:
This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, Shiraz University, Shiraz, Fars, 7193616548, Iran.
This paper presents a novel adaptive fault-tolerant control (AFTC) framework for systems with piezoelectric sensor patches, specifically targeting sensor faults and external disturbances. The proposed method ensures robust control of cantilever thick plates by integrating adaptive estimation to simultaneously handle sensor faults and system uncertainties, maintaining stability despite issues like drift, bias, loss of accuracy, and effectiveness. Unlike traditional approaches that address sensor faults individually, our method provides a comprehensive solution backed by Lyapunov-based stability analysis, demonstrating uniform ultimate boundedness under various fault conditions.
View Article and Find Full Text PDFISA Trans
December 2024
School of Mathematics and Statistics, Guangxi Normal University, Guilin 541006, China. Electronic address:
This paper addresses the event-based sliding mode control problem for singularly perturbed systems with switching parameters. Unlike traditional Markovian switching systems, singularly perturbed S-MSSs allow more flexible state transitions, which can be described by a general distribution rather than the exponential distribution assumed in Markovian switching systems. To enhance the performance of such systems, a novel memory-based dynamic event-triggered protocol (DETP) is proposed, incorporating a memory term for the auxiliary offset variable.
View Article and Find Full Text PDFSci Rep
December 2024
ENET Centre, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic.
Switched Reluctance Motor (SRM) has a very high potential for adjustable speed drive operation due to their cost-effectiveness, high efficiency, robustness, simplicity, etc. Now a days SRMs are widely used in automotive industries as traction motors in electric vehicles and hybrid electric vehicles, air-conditioning compressors, and for other auxiliary services. In this article, a novel super twisting sliding mode controller (STSMC) is proposed to improve the performance of an SRM for reducing the ripple in speed and torque.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronics Engineering, SR University, Warangal, Telangana, 506371, India.
Autonomous microgrids (ATMG), with green power sources, like solar and wind, require an efficient control scheme to secure frequency stability. The weather and locationally dependent behavior of the green power sources impact the system frequency imperfectly. This paper develops an intelligent, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!