Background: The identification of infection in diabetic foot ulcers (DFUs) is challenging due to variability within classes, visual similarity between classes, reduced contrast with healthy skin, and presence of artifacts. Existing studies focus on visual characteristics and tissue classification rather than infection detection, critical for assessing DFUs and predicting amputation risk.

Objective: To address these challenges, this study proposes a deep learning model using a hybrid CNN and Swin Transformer architecture for infection classification in DFU images. The aim is to leverage end-to-end mapping without prior knowledge, integrating local and global feature extraction to improve detection accuracy.

Methods: The proposed model utilizes a hybrid CNN and Swin Transformer architecture. It employs the Grad CAM technique to visualize the decision-making process of the CNN and Transformer blocks. The DFUC Challenge dataset is used for training and evaluation, emphasizing the model's ability to accurately classify DFU images into infected and non-infected categories.

Results: The model achieves high performance metrics: sensitivity (95.98%), specificity (97.08%), accuracy (96.52%), and Matthews Correlation Coefficient (0.93). These results indicate the model's effectiveness in quickly diagnosing DFU infections, highlighting its potential as a valuable tool for medical professionals.

Conclusion: The hybrid CNN and Swin Transformer architecture effectively combines strengths from both models, enabling accurate classification of DFU images as infected or non-infected, even in complex scenarios. The use of Grad CAM provides insights into the model's decision process, aiding in identifying infected regions within DFU images. This approach shows promise for enhancing clinical assessment and management of DFU infections.

Download full-text PDF

Source
http://dx.doi.org/10.3233/THC-241444DOI Listing

Publication Analysis

Top Keywords

dfu images
16
hybrid cnn
12
cnn swin
12
swin transformer
12
transformer architecture
12
deep learning
8
diabetic foot
8
classification dfu
8
grad cam
8
images infected
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!